Supporting Information

Crystal Environment Induced Symmetry Reduction (CEISR): Deep Analysis of *Para*-Chloroacetophenone Azine and Generalization

Harmeet Bhoday,^a Kaidi Yang,^{a,b} Steven P. Kelley,^b and Rainer Glaser^{a,*}

^a Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, 65409. Email: <u>glaserr@mst.edu</u>

^b Department of Chemistry, University of Missouri, Columbia, Missouri, 65211

Table of Contents

Fig. S1 Neighboring AAz chains are anti-parallel and enantiomeric	S 2
Fig. S2 The interatomic distances describing pairs Q and T	S 3
Table S1 Helicity of the Phenyl Twist in Optimized Structures of 1 Starting from Different Trial Structures	S4
Fig. S3 Intralayer and Interlayer neighboring interactions in (I, I)-azine 3	S5
Fig. S4 Intralayer and Interlayer neighboring interactions in (PhO, PhO)-azine 5	S 6
Fig. S5 Intralayer and Interlayer neighboring interactions in (Br, Br)-azine 2-Ia	S7
Fig. S6 Intralayer and Interlayer neighboring interactions in (PrO, PrO)-azine 10	S 8
Fig. S7 Hirshfeld Surfaces for 1-I (Cl), 2-Ia (Br), 3 (I), 5 (PhO), and 10 (PrO)	S9
Fig. S8 Color-coded interaction mapping in (Cl, Cl)-azine 1	S10
Fig. S9 Color-coded interaction mapping in (I, I)-azine 3	S10
Fig. S10 Color-coded interaction mapping in (Br, Br)-azine 5	S11
Fig. S11 Color-coded interaction mapping in (PrO, PrO)-azine 2-Ia	S11
Fig. S12 Color-coded interaction mapping in (PhO, PhO)-azine 10	S12
Table S2 Color-coded pairwise interaction energies relative to starred moleculein 5 (PhO), 3 (I), 1-I (Cl), 2-Ia (Br) and 10 (PrO)	S13

Fig. S1 The directed AAz chain containing molecules V and W is shown as in Fig. 4 and contains only P helicity molecules. The neighboring AAz chain is directed anti-parallel and comprises of only M helicity molecules.

Fig. S2 The interatomic distances between the pair \mathbf{Q} , * and pair \mathbf{T} , *.

Table S1 Helicity of the Phenyl Twist in Optimized Structures of 1

				TI		
		I	a	Ib		
		starting	optimized	starting	optimized	
		struc.	struc.	struc.	struc.	
I a1	Azine helicity	Р	Р	М	М	
	τ	134.71	132.39	-134.71	-132.39	
	Ph1 helicity	Р	М	М	Р	
	\$ 1	29.31	-15.61	-29.31	15.66	
	Ph2 helicity	М	М	Р	Р	
	\$ 2	-30.53	-15.58	30.53	15.65	
Ia2	Azine helicity	Р	Р	М	М	
	τ	134.71	132.39	-134.71	-132.39	
	Ph1 helicity	M	М	Р	Р	
	\$ 1	-29.31	-15.65	29.31	15.65	
	Ph2 helicity	Р	М	М	Р	
	\$ 2	30.53	-15.66	-30.53	15.66	
Ia3	Azine helicity	Р	Р	М	М	
	τ	134.71	132.39	-134.71	-132.39	
	Ph1 helicity	Р	М	М	Р	
	\$ 1	29.31	-15.66	-29.31	15.66	
	Ph2 helicity	P	М	М	P	
	\$ 2	30.53	-15.65	-30.53	15.65	

Starting from Different Trial Structures

Fig. S3 The starred molecule in (I, I)-azine **3** with neighbors (a) \mathbf{Q} - **U** in the *intra*layer and (b) **Y** in the *inter*layer. The molecule possesses C_2 -symmetry, so the arenes are indistinguishable.

(b)

(f)

Fig. S4 The starred molecule in (PhO, PhO)-azine **5** with neighbors (a) \mathbf{Q} - \mathbf{U} in the *intra*layer and (b) \mathbf{X} - \mathbf{Z} in the *inter*layer. The molecule possesses C_2 -symmetry, so the arenes A_i and A_s are indistinguishable.

Fig. S5 The starred molecule in (Br, Br)-azine **2-Ia** with neighbors (a) \mathbf{Q} - \mathbf{W} in the intralayer and (b) \mathbf{X} - \mathbf{Z} in the interlayer.

(b)

(e)

Fig. S6 (a)-(e) The starred molecule in (PrO, PrO)-azine **10** with neighbors $\mathbf{Q} - \mathbf{U}$ in the *intra*layer. (f) $\mathbf{Y} - \mathbf{Z}_4$ in the *inter*layer.

Fig. S7 Hirshfeld surfaces for C_1 -symmetric azines (a) (Cl, Cl)-azine **1-I**, (b) (Br, Br)-azine **2-Ia**, and (c) (PrO, PrO)-azine **10** and C_2 -symmetric azines (d) (I, I)-azine **3** and (e) (PhO, PhO)-azine **10**.

Fig. S8 Color-coded interaction mapping within 3.8 Å of the starred molecule in I.

Fig. S9 Color-coded interaction mapping within 3.8 Å of the starred molecule in (I, I)-azine 3.

Fig. S10 Color-coded interaction mapping within 3.8 Å of the starred molecule in (PhO, PhO)-azine **5**.

Fig. S11 Color-coded interaction mapping within 3.8 Å of the starred molecule in (Br, Br)-azine **2-Ia**.

Fig. S12 Color-coded interaction mapping within 3.8 Å of the starred molecule in (PrO, PrO)-azine 10.

		. 10 (110	/				
	\mathbf{N}^{a}	R ^b	Eele	$E_{ m pol}$	Edis	Exrep	Etot
PhO							
Q , T	2	4.90	-21.6	-3.5	-94.4	60.0	-70.6
R, U	2	4.89	-20.0	-3.3	-91.7	57.4	-67.9
S	2	6.54	-5.8	-0.6	-32.1	13.8	-26.0
Y	2	23.87	1.8	-0.3	-10.9	0	-7.9
X	2	23.57	0	-0.2	-6.7	0	-6.0
Z	4	23.78	0	-0.1	-5.0	0	-4.4
<u> </u>							
R, U	2	4.66	-15.5	-3.6	-72.3	37.4	-52.9
Q , T	2	5.01	-15.7	-4.3	-68.3	38.4	-49.2
S	2	6.37	-7.3	-1.6	-35.6	16.0	-27.5
Y	4	17.55	13.8	-0.2	-8.6	0	6.2
Cl							
U	1	4.89	-10.8	-1.7	-62.2	34.3	-45.6
Q , T	2	5.76	-8.6	-1.7	-44.9	24.6	-34.4
V, W	2	6.13	-5.7	-1.6	-49.1	26.3	-33.7
R	1	8.51	-2.9	-0.5	-16.3	9.5	-11.8
\mathbf{Z}_1	2	14.53	-2.6	-0.2	-5.2	0	-7.5
\mathbb{Z}_2	2	15.78	2.5	-0.4	-7.5	0	-4.2
X	1	12.16	17.2	-0.8	-23.7	0	-3.0
Y	2	17.72	2.9	0	-3.4	0	0.2
Br	1	4.05	0.2	1.0	c_0 7	22.0	42.5
	1	4.95	-9.2	-1.0	-60.7	52.8 24.0	-43.5
\mathbf{Q}, \mathbf{I}	2	5.85	-11.8	-2.0	-52.1	34.9	-3/./
V, W	2	6.55	-5.5	-1.0	-43.4	23.7	-30.3
	2	12.91	-16.4	-0.3	-14.7	0	-30.3
K	1	8.56	-3.5	-0.6	-23.8	9.6	-19.0
\mathbf{Z}_1	2	15.80	-4.0	-0.1	-3.6	0	-1.4
Y	2	15.49	2.3	-0.3	-8.8	0	-5.5
\mathbb{Z}_2	2	12.67	4.6	-0.4	-9.8	0	-3.9
PrO							
	1	5 78	-25.2	-53	-89.8	65.8	-68.1
Т	1	4,90	-25.1	-3.3	-92.7	68.9	-67.2
Ō	1	4 87	-21.0	-3.0	-84.2	52.3	-65.4
R	1	4 65	-10.6	-57	-94 1	567	-62.3
S	2	6.32	-12.1	-1.8	-49.9	33.3	-37.0
Y	2	21.13	-2.4	-0.2	-10.7	0	-11.9
7.	- 1	22.35	-2.1	-0.1	-87	Ő	_9.9
7.2	1	20.55	-17	-0.2	-49	Ő	-6.2
73	1	23.74	-0.1	0	-4 2	õ	-37
Z 4	1	24.55	-0.7	Ő	-1.7	Ő	-2.3

Table S2 Color-coded pairwise interaction energies relative to starred molecule in 5 (PhO), 3 (I), 1-I (Cl). 2-Ia (Br) and 10 (PrO)

^aN = number of neighboring molecules with same E_{tot} . ^bR = distance between molecular centroids expressed in Å. ^cElectrostatic (E_{ele}), polarization (E_{pol}), dispersion (E_{dis}), exchange-repulsion (E_{xrep}), and total energies (E_{tot}) in kJ/mol. ^d E_{tot} (CE-B3LYP) = 1.057 E_{ele} + 0.740 E_{pol} + 0.871 E_{dis} + 0.618 E_{xrep} for **5** (PhO), **1-I** (Cl), **2-Ia** (Br) and **10** (PrO). ^e E_{tot} (CE-HF) = 1.019 E_{ele} + 0.651 E_{pol} + 0.901 E_{dis} + 0.811 E_{xrep} for **3** (I).