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Figure 1. Charge Distributions A and B.

The classical N-body problem requires O(N2) calculations, thus
as N grows the computational requirements quickly become
overwhelming.  Numerical techniques designed to deal with
large N generally compute some kind of “average” for the
charge distribution in A and B.  And then use these “averages”
to estimate the potential. One method that has shown good
results for point charges is the Fast Multipole Method (FMM).  



The basic FMM formula (equation 0) is of the form,
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This naturally leads to the following question. Does there exist
an expression for the potential that has the following form:
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Since chemistry deals with continuous charge distributions, a
more appropriate form might be:
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The advantage that the latter equations have over the former is
that in the latter equations the sum/integral over B is
independent of A.  This should hopefully result in a more
efficient method for computing distant interaction potentials.



Qj = (ρj, αj, βj)

Pk = (rk, θk, φk)

A
B

r'jk

ρj < ri

Pi has charge pi

Qi has charge qi

Figure 2.  Definitions Concerning the Charge Distributions.

How the FMM achieves its asymptotic efficiency can be seen in
the following formula for the interaction potential between
charge distributions A and B.

  (0)

Where the  are the spherical harmonic basis functions and

The key feature of the above equation is that the values of the
 are independent of the charges in B.  This makes this

equation asymptotically more efficient to evaluate than a
straight forward pairwise calculation.



DERIVATION OF MODIFIED FMM

In order to derive our modified FMM (i.e. eq. 2’ ) we start with
the following coordinate system.  

Figure 3.
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We would like to obtain a power series expansion for |R+Z|-1
the reciprocal of the distance between a point in A and a point
in B.  We proceed as follows.

Setting

and applying the appropriate expansion formula we get that
|R+Z|-1 has a power series expansion of the form:

whenever |x| < 1.  With a little calculation it can be shown that

Where I is the 3 by 3 identity matrix,  is the k-fold tensor
product, and 〈 , 〉 is the inner product operator.  



We can now write,

If we rearrange the terms above and introduce the following
notation:

we can write the above equation as

(3)

Where m/2 is the greatest integer less than or equal to m/2.
Thus the potential interaction between charge distributions A
and B is

       

This can be rewritten as

        



In order to convert our last equation into our desired form
we must first convert

into an expression of multipoles.  We give an example of how
to accomplish this for the (a,b) tensor component of the m=2
term.

 

Once these type of calculations are carried out for the desired
values of m, they can be inserted into equation 3.  Then all that
is left to do is to expand the inner product to get a multipole
expansion of the desired form (i.e. eq. 2).  



The multipole expansion (eq. 1) used in the FMM, while
having good asymptotic behavior has a very high computational
constant factor.  However the FMM has a very simple but
clever idea for reducing the computational constant.  The basic
idea is based on the fact that the size of the approximation error
is directly related to the geometric size of the distribution and
inversely related to the distance between the charge
distributions.  Thus as the distance increases we can collect
nearby distributions together to form larger distributions.  These
larger distributions can then be used in eq.1, resulting in
improved computational efficiency without an increase in the
error.
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Figure 4.  Formations of Aggregate Distributions from
Small Distributions.



In order to be able to collect charge distributions into larger
groups, three things are needed:

1) an appropriate data structure,  

2) a method for combining distributions,  

3) a good estimate of the error.  

The FMM uses a multidimensional binary search tree known as
an Octal tree to take care of item one.  The Octal tree method
as implemented in the FMM needs to be modified for
continuous distributions.  We will not discuss the necessary
modifications. To accomplish item two we could simply add
distributions together to form a large distribution.  And then
calculate the multipole moments for the new distribution.
Assuming the multipole moments have already been computed,
this would be a very inefficient approach.  A more efficient
approach is to find a method that uses the previously calculated
multipole moments; which is what we do. The third item, a
good error estimate, is needed in order to be able to determine
how many distributions can be grouped together.  The more
distributions that can be grouped together; the more efficient the
algorithm.



To illustrate how item two is calculated, we give an example
that shows how two (i,j) quadrupole components are combined.
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Figure 5.  Coordinate System for Combination of Multipoles.

The (i,j) quadrupole component for the combined distribution
above is derived as follows,

The latter expression is simply a linear combination of
monopoles, dipoles, and quadrupoles.



To derive our error estimate (item 3) we use Taylor’s remainder
formula for :

(4)

The expression

is known as the remainder term.  We will use this remainder
term to derive our error estimate.  By comparing equations (3)
and (4) we conclude that

(5)
Where

If we replace in equation (5)  with its
power series expansion;  then throw out all but the dominant
term, and do a few other things, we get the following error
estimate.  

(6)



Since |z| < |R| , equation (6) is dominated by the k = N/2
term.  Since we are looking for an estimate of the error, we will
ignore all but the k = N/2 term and work with

(7)

Thus if N is odd (7) becomes,

(8)

If N is even (7) becomes,

(9)

Equation 8 is of little practical value.  Equation 9 represents an
error estimate in terms of previously computed multipole
moments for even ordered expansions.  We will therefore
restrict ourselves to even ordered expansions.  From a
computational point of view, this is not a major drawback.
Evaluating N+1 terms when N terms are sufficient results in
greater accuracy.  This greater accuracy should allow for larger
aggregates of distributions; which in turn will reduce the
computational cost.  Thus cancelling out a major portion of the
inefficiency produced by going to N+1.



CONCLUSION

The Multipole expansion derived above has several interesting
features:  

               1) it has linear to near linear scaling,  
               2) it has an error estimate,  
               3) it satisfies equation 2’.  

Item (1) (along with the appropriate data base) is the minimal
requirement for a fast multipole algorithm.  Item (2), the error
estimate is a bit different than most error estimates in that it can
also be used as a correction term.  Item (3) is new to the FMM
world and has some interesting consequences.  Because of (3)
we need only calculate the multipole moments of our basic
distributions.  Once this is done we can translate, rotate, and
combine these moments to generate new moments, without any
further integration.  Thus avoiding costlier integral evaluations.  
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Figure 6.  Translated and Rotated Charge Distributions.


