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The theory of atoms in molecules defines an unambiguous partitioning of the three-dimensional elec¬ 
tron density into atomic basins based on the zero-flux surfaces of the gradient of the electron density, 
Vp(r). Integrations of the electron density within such basins }deld integrated Bader populations (IBP) 
that have a rigorous foundation in quantum mechanics. In the density integration technique based on 
the two-dimensional electron density projection function, P{x,z), integrated projection populations (IPP) 
are obtained by integration within regions demarked by steepest descent lines Dp of P{x,z). These den¬ 
sity integration techniques are compared by an analysis of the electron density of diatomic molecules 
that is based on the properties of the zero-flux surface that partitions the electron density between the 
atoms. The conventional method for the partitioning of regions of Pix,z) approximates the virial parti¬ 
tioning. Differences between IPP and IBP can be quantitatively described by two terms. One term re¬ 
flects the error intrinsic to projection populations eis a result of the loss of all information about the 
electron distribution in the third dimension in the calculation of P(x,z). The second term accounts for 
the effects of the displacement of the demarcation lines Dp toward the less polarizable atom compared 
with the cross-section of the density with the plane of projection, Dj. The analysis suggests the defini¬ 
tion of a projection population IPP2 that is based on the cross-section Dj instead of the demarcation 
lines Dp. Relations between the populations IPP, IPP2, and IBP are derived for diatomic molecules and 
numerical results are presented for a series of diatomic molecules. Several polyatomic anions are also 
discussed. The values of IPP are found to be good approximations of IBP in highly polar diatomic 
molecules. In cases where the bonding involves comparatively little intramolecular charge transfer 
IPP2 is the better and equally satisfactory projection population. In the intermediate semipolar bond¬ 
ing situations projection populations provide qualitatively correct descriptions of the charge distribu¬ 
tions but the numerical agreement with the IBP values is less satisfactory. 

INTRODUCTION 

The concept of atomic charge in molecules 
is one of the most useful tools for chemists to 
characterize the nature of bonding, to ex¬ 
plain the reactivity of molecules, and to dis¬ 
cuss reaction mechanisms. Yet, it has proved 
difficult to quantify the notion of atomic 
charge within the framework of quantum 
chemistry. The general problem of any popu¬ 
lation analysis consists in the partitioning of 
the electron density. Basis set partitioning 
and electron density integration techniques 
have emerged as the two fundamentally dif¬ 
ferent approaches to determine populations. 

Among the population analyses based on 
basis set partitioning are the Mulliken popu¬ 
lation (MP) analysis,^ the SEN method 
(shared electron number),^'^ and the natural 

population method® to name a few.® The 
Mulliken population analysis is the most 
usually applied method of this class and its 
capabilities and deficiencies are well 
known.^"^® Density integration techniques 
differ from the basis set partitioning tech¬ 
niques fundamentally in that they consider 
only the electron density (as defined by the 
wave function). The electron density is ex¬ 
perimentally observable and graphical rep¬ 
resentations can be studied to facilitate 
comparison, to reveal trends, and to express 
topological characteristics better than any 
print out. Problems arising in the basis set 
partitioning technqiues related to the as¬ 
signment of density to the basis function 
centers do not occur. The problem of parti¬ 
tioning the electron density between the nu- 
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clei remains, and different methods have 
been proposed to resolve it. The partitioning 
of the electron density has been carried out 
with reference to the free atoms,without 
reference to free atoms but to other assump¬ 
tions,^® and based exclusively on the topolog¬ 
ical features of the electron density. The 
latter approach has received its most rigor¬ 
ous and elegant treatment by Bader and 
co-workers.The density integration 
technique developed by Streitwieser and co¬ 
workers is based on the topological features 
of electron density projection functions,®®"®^ 
and has been applied routinely over the last 
decade to study a variety of theoretical or¬ 
ganic problems.®®"®® 

Here a comparison is presented between 
the density integration techniques of Bader 
and Streitwieser. The methods are briefly 
reviewed with emphasis on the partitioning 
schemes. Criteria are presented that allow 
for a qualitative description of the approxi¬ 
mations intrinsic to the partitioning of pro¬ 
jection functions compared with partitioning 
in three-dimensional space. In the main dis¬ 
cussion of this Eirticle, relations between the 
integrated populations are derived for di¬ 
atomic molecules based on the properties of 
the zero-flux surface of the gradient of the 
electron density Vp(r). Integrated popula¬ 
tions obtained with several partitioning 
methods are reported for a series of diatomic 
molecules to provide numerical evidence for 
and to test the conclusions of the analysis. 
Some polyatomic 7r-conjugated anions are 
also considered. 

DENSITY INTEGRATION TECHNIQUES 

The Bader Method 

The studies of electron density distribu¬ 
tions by Bader’s group may be seen to pro¬ 
ceed through three distinct stages. In the 
early articles^^ no attempt was made to parti¬ 
tion the total electron density. The report by 
Bader, Beddall, and Cade^® may be regarded 
as the beginning of the second phase.^®"®^ A 
natural partitioning of the electron density 
was proposed^® and defined by a plane per¬ 
pendicular to the molecular axis and passing 
through the point at which the electror. den¬ 
sity reaches a minimum along the inter- 
nuclear axis. The partitioning scheme was 
refined by Bader and Beddall,^® and it was 

shown that it is possible to partition a 
molecule so that the virial relationship 
holds for the molecular fragments. This un¬ 
ambiguous spatial partitioning requires that 
the regions are connected by a surface Sir) 
such that the flux of the gradient of the den¬ 
sity, Vp(r), normal to the surface be zero at 
every point on the surface. This partitioning 
method defines the atom in the molecule 
and provides the basis for the theory of 
atoms in molecules.®^’ 

The paper by Bader, Anderson, and Duke^ 
on the quantum topology of the charge dis¬ 
tribution may be regarded as the beginning 
of the third stage.®®"®® The basis for the topo¬ 
logical characterization is given by the gra¬ 
dient vector field of the electron density, 
Vp(r),®®"®® and by the Laplacian distribution 
of the density, V®p(r).®^’®®’‘*® The gradient 
vector field plays the central role in the par¬ 
titioning of the density. Critical points in 
Vp(r), points where Vp(r) = 0, define the 
principal characteristics of the electron dis¬ 
tribution. These points are characterized by 
the non-zero eigenvalues Xj of the Hessian 
matrix®® of p(r), that is, the principal curva¬ 
tures of p(r) at the critical point. The criti¬ 
cal points are classified by the rank, 
denoting the number of non-zero eigenval¬ 
ues Xj and the signature, the number of ex¬ 
cess positive over negative eigenvalues Xj. 
Possible combinations of rank and signature 
are limited to the pairs (rank, signature): 
(3, + 3), (3,-3), (3,-1) and (3, + l). Critical 
points (3,+3) and (3,-3) coincide with the 
interior of a cage and the position of the nu¬ 
clei, respectively. Critical points (3,+l) and 
(3,-1) are saddle points and occur in the 
central position of a ring system or between 
bonded atoms, respectively. The unique tra¬ 
jectory traced out by Vp(r), associated with 
the positive eigenvalue, and originating at 
the bond critical point in most cases^^ con¬ 
nects two bonded atoms and defines the 
bond path,^^’^^ and the trajectories associ¬ 
ated with the negative eigenvalues define 
the zero-flux surface that partitions the 
molecule into atomic fragments. In these 
terms, the set of surfaces generated by all 
(3,-1) points partitions the space of a 
molecule into a collection of chemically iden¬ 
tifiable atomlike regions, called basins. Nu¬ 
merical integration®® of the electron density 
within the basins yields atomic populations. 
Aside from the definition of atomic popula- 
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tions based on quantum mechanics, the the¬ 
ory of atoms in molecules^ has been applied 
to many other problems,^^’^^’*^® primarily 
by the groups of Bader, Wiberg, and Cremer. 

Electron Density Projection Functions: The 
Streitwieser Method 

Integrated projection populations (IPP)^®, 
are based on the electron density projection 
function that is defined by 

J+x 

pix,y,z)dy 

For the discussion of the partitioning re¬ 
quired to determine projection populations 
the following topological description of 
Pix,z) is useful. Contour maps of Pix,z) par¬ 
allel density diagrams, and they may be 
described in a similar manner for planar 
molecule if the projection plane coincides 
with the molecular plane.Using the 
gradient of the projection function, VP{x,z), 
and defining the rank and the signature in 
analogy to Bader et al.“ the projection criti¬ 
cal points (2, -2)p, (2,0)p and (2, +2)p may be 
defined. Critical points (2, -2)p correspond to 
maxima of P(x,z). The points (2,0)p corre¬ 
spond to saddle points of Pix,z), and the 
points (2, +2)p occur in the centers of ring 
systems. As with the points (3, -1) the criti¬ 
cal points (2,0)p play a crucial role for the 
integration procedure. 

Integration of the projection functions in 
regions around specified atoms leads to the 
IPP value.The partitioning of P{x,z) is 
done in an unambiguous manner; that is, a 
demarcation line is defined that originates at 
the critical point (2,0)p and follows the steep¬ 
est descent path in both directions. The 
trajectory associated with the positive 
eigenvalue of VPix,z) defines the projected 
bond path and the other trajectory defines 
the demarcation line Dp. For homonuclear 
diatomic molecules the critical points (2,0)p 
and (3, -1) coincide, and the steepest descent 
path in two-dimensional space emulates a 
plane that is identical to the zero-flux sur¬ 
face of the gradient of the density. For all 
other cases this integration procedure gives 
values that are approximations to the inte¬ 
grated population of a basin. 

RELATIONS BETWEEN INTEGRATED 
POPULATIONS 

Criteria Describing the Approximations 

Consider a diatomic molecule composed of 
atoms with a large electronegativity dif¬ 
ference; LiCl is a good example. Given a 
wave function for this molecule^® the C*v 
symmetric zero-flux surface, ZFS, can be 
determined and integration within the basin 
yields the population of 2.06 electrons for Li. 
The electron density distribution in the x,z 
plane and the cross-section of the zero-flux 
surface. Da, are shown in Figure 1. Popula¬ 
tions determined in this way will be called 
integrated Bader populations (IBP). Calcula¬ 
tion of P{x,z) with the same wave function, 
demarcation {Dpix,z), Fig. 2), and integra¬ 
tion leads to the IPP value of 2.08 electrons 
of lithium. This IPP value is an approxima¬ 
tion of IBP, for it contains two systematic 
errors. 

The first error consists in the approxima¬ 
tion of the rotationally S3nnmetric zero-flux 
surface by a vertical curtain. This error will 
always increase the IPP value of the less po¬ 
larizable atom compared to IBP {vide infra). 
Moreover, Figures 1 and 2 show that the 
critical point (2,0)p is moved toward Li with 
respect to the critical point (3, -1). The dif¬ 
ference in the relative positions of these 
bond critical points; 0.088 A, can be used to 
characterize this error.^® It also can be seen 

ing of 0.005. Chlorine is located at the origin and 
lithium lies on the z axis, z = 2.072 A. The bond path 
is shown as a solid line smd the bond critical point oc¬ 
curs at z = 1.380 A (MD 0.037). The cross-section of 
the zero-flux surface is shown as a dotted line. 
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Figure 2. Contour map of the projection fimction of 
LiCl. Contours start at O.Ole a.u. with a level spac¬ 
ing of 0.01. The molecule is oriented as in Figure 1. 
The critical point along the projected bond path occurs 
at z = 1.468 A (MPD 0.103). The demarcation line Dp 
is shown as a dotted line. 

that the line Dp (Fig. 2) engulfs the less po¬ 
larizable atom more tightly than does the 
cross-section D^CFig. 1). The displacement 
of the bond critical points and the compres¬ 
sion of the line Dp can be described in exact 
analogy {vide infra), and this second error 
needs to be accounted for by a second term 
in the difference between IPP and IBP. Both 
errors and the characteristic values that de¬ 
scribe them become zero in the limiting case 
of a homonuclear diatomic molecule. 

A large difference of the electronegativi¬ 
ties of two connected atoms results in small 
values of p(r) and P{x,z) in the intemuclear 
region ("ionic bonding”) and the precise loca¬ 
tion of the partitioning surface is not as cru¬ 
cial. Such assumptions are no longer justified 
if the electronegativity difference is smaller. 
In FCl, for example, the displacement be¬ 
tween Dp and Da, Abcp = 0.044 A, is reduced 
(Figs. 3 and 4). Nonetheless, because of the 
increased electron density in the bonding re¬ 
gion small differences in shape and location 
of the partitioning surface might affect sig¬ 
nificantly the integration result. Because 
the partitioning is the most crucial factor 
in the determination of populations, a quan¬ 
titative comparison between projection pop¬ 
ulations IPP and the populations IBP is 
important. Here relations between IPP and 
IBP are derived for diatomic molecules A-B, 
where atom A is the less polarizable atom. 
LiCl and FCl t5q)ify limiting cases. Chlorine 
is atom B in LiCl and FCl. Note that Li and 
F are both less polarizable than Cl, although 

Figure 3. Contour map of the electron density of 
FCl. Contours start at 0.005e a.u. with a level spac¬ 
ing of 0.030. Chlorine is located at the origin and fluo¬ 
rine lies on the z axis, z = 1.613 A. The bond path is 
shown as a solid line and the bond critical point occurs 
at 2 = 0.734 A (MD 0.191). The cross-section of the 
zero-flux surface is shown as a dotted line. 

Figure 4. Contour map of the projection function of 
FCl. Contours start at O.Ole a.u.~^ with a level spac¬ 
ing of 0.06. The molecule is oriented as in Figure 3 
and the critical point along the projected bond path oc¬ 
curs at 2 = 0.778 A (MPD 0.483). The demarcation line 
is shown as a dotted line. 

atom A is positively charged for A = Li and 
negatively charged for A = F. 

The geometric orientation was selected as 
follows: The intemuclear axis of A-B coin¬ 
cides with the z axis. The right-handed Carte¬ 
sian coordinate system originates at the 
bond critical point and A is placed on the 
negative z axis. Projections are parallel to 
the y axis. 

Definition of the Polarization 
Volume and Its Components 

The C«v-S3nnmetric zero-flux surface ZFS 
and its cross-sections with the xz plane 



122 Glaser 

{Dd[x, z]) and with the yz plane {Dd\y, z]), re¬ 
spectively, are shown schematically in Fig¬ 
ure 5. The population of atom A is determined 
by integration of p(r) within the Coov- 
S3mimetric conical basin. It is useful to de¬ 
fine a second conical volume as follows. The 
natural partitioning^^ plane N^ix, y) is de¬ 
fined as the plane that is perpendicular to 
the molecular axis and that passes through 
the bond critical point. A volume Vj is de¬ 
fined by the plane N^ix, y) and the condition 
that all points within this volume are on the 
side of atom A. The second conical volume 
can then be defined as the difference be¬ 
tween Vrf and the basin of atom A. The elec¬ 
tron density contained in this second conical 
volume belongs to atom B, despite this vol¬ 
ume’s closer proximity to the atom A. This 
second conical volume will be called the po¬ 
larization volume, PVd- In the limiting case 
of a homonuclear diatomic PV^ will be zero. 

The basic approximation made in the ap¬ 
proach to obtain populations from the projec¬ 
tion function P{x,z) is the implicit assumption 
that the Cocv-S5mimetric zero-flux surface can 
be replaced by a vertical curtain in three- 
dimensional space. In the ideal case where 
Dd = Dp this assumption implies that the 
surface engulfing atom A can be replaced to 
a good approximation by the only Cg-sym- 

metric surface Six, y, z) defined such that 
the points Six, z) are elements of Ddix, z), 
and where the coordinate y can assume any 
value (Fig. 5). To describe the error associ¬ 
ated with this approximation, a splitting of 
the polarization volume into two parts is 
helpful. The vertical polarization volume 
PVd,v is defined as that part of PVd for which 
all the contained points Mix, y, z) fulfill the 
condition that their projections are within 
the region of the xz plane demarked by Dd 
ix, z) around atom A. The horizontal polar¬ 
ization volume PVd,h is defined as the differ¬ 
ence between the volumes PVd and PVd,v 

The definition of the polarization volume 
is based on the ZFS and the definitions of its 
vertical and horizontal components are based 
on the cross-section Ddix, z). Now, we need 
to consider the changes of the polarization 
volume that occur when the three-dimensional 
electron density is partitioned based on the 
demarcation line Dpix, 2) of Pix, z). In this 
case Six, y, z) is replaced by a surface Tix, y,z) 
for which all the points Tix, z) are elements 
of Dpix, z) and the y coordinate can assume 
any value. This surface and the plane Np par¬ 
allel to Ndix, y) and passing through the pro¬ 
jection bond critical point define a volume 
that corresponds topologically to the horizon¬ 
tal polarization volume PVd,h and it will be 

Vertical Curtain Surface S(x,v,z) 

Figure 5. Schematic representation of the zero-flux surface of the 
gradient of the electron density, Vp(*, y, z), of a diatomic molecule 
A-B, where A is the less polarizable atom. The natural partitioning 
plane NjCx, y) is orthogonal to the intemuclear axis and contains the 
bond critical point BCP. The volume between Njix, y) and the zero- 
flux surface is the polarization volume PVj. The surface S(x, y,z) de¬ 
fines the vertical and horizontal components of the polarization volume. 
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called the horizontal projection polarization 
volume, PVp h. 

Relations Between Density 
Integration Populations 

The first consideration is how IBP and IPP 
of atom A differ in the ideal case in which 
Dpix, z) and D^ix, z) are assumed to be iden¬ 
tical and the effects of their difference are 
subsequently taken into account. In this 
ideal case PVd,h and Pyp,h are identical, and 
the electrons in this common volume Eire as¬ 
signed to the correct atom, B. However, the 
projection method falsely assigns the elec¬ 
tron density contained in the vertical polar¬ 
ization volume PVd,v to atom A and causes 
the IPP(A) to be larger than IBP(A). Denot¬ 
ing the number of electrons in PVd,v as 
E{PVd,v), the following relation is obtained 
between IBP smd IPP of atom A (in the follow¬ 
ing all populations will refer to the atom A 
unless otherwise specified) in the ideal case, 

IPPid: 

IPP^ = IBP + E(PVd.„) (1) 

The next step examines how IPPid deviates 
from IPP as a result of the nonequality of 
the demarcation lines Dd and Dp. In the fol¬ 
lowing the three-dimensional electron den¬ 
sity distribution is analyzed to ascertain 
why the lines Dd and Dp do not coincide and 
how they differ. 

To evEduate the relation between the demEur- 
cation lines, a series of volume elements is 
considered that are defined by two planes, 
parallel to the yz plEme with x = +0.5A Emd 
X = -0.5A, respectively, and a series of 
planes Np^n^n = 0... n) that are parallel to 
the plane Np{x, y), separated by a distance A 
and intersecting the internuclear axis be¬ 
tween the bond critical point and atom A. 
The first plane Np^ intersects the z axis at 
z = 0.5A. The planes iVp j and iVpi+i define a 
volume element Ui with a squared face of 
lengths A Emd extending to infinity into both 
y directions. The zero-flux surface dissects 
these volume elements into two parts as il¬ 
lustrated schematically in Figure 6; the 
inner part containing electrons that 
belong to atom A and the outer part 
that contEiins electrons that belong to atom B. 
If A is selected sufficiently small, then the 
quotient between the number of electrons in 
the volume element Ui and the Eirea element 
A^ defines the value of P{x,z) on the molecu¬ 
lar Eutis at 2 = -(i - A). In analogy the quo¬ 
tients between the numbers of electrons in 
the volumes and respectively, 
and the EU’ea element A^ define the contribu¬ 
tions to the projection function arising from 
electron density of atom A, and from 
atom B, p?®*®*". Considering the shape of the 
zero-flux surface it is almost trivial to state 
that Pj,®®®*" is negligible at the bond critical 
point and that p/®®®*’ increases with increas- 

Figure 6. Schematic representation of the volume elements Ui. 
The inner and outer components of Ui result from dissection of t/j by 
the zero-flux surface. Half of the volume elements are shown (posi¬ 
tive y). 
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ing i, while has a finite value and 
decreases with increasing i. 

The incremental decrease of in going 
from volume element i to volume element 
1 + 1 is given by 

= -^Vpi (2) 

where AV equals and Pi is the 
average electron density in that volume of 
jjouter jg being lost. The corresponding 
incremental increase of P/“*®*’ is given by the 
similar expression 

= (3) 

where p^+i is the average electron density in 
that part of that is being gained. 

Now suppose that pi and pj+i were related 
such that Pi < pi+i is true for all i. The in¬ 
crease APj““®'' would be larger than the de¬ 
crease AP ®“‘®*’ and Pf would increase con¬ 
stantly as i increases. This would lead to a 
negative slope of finite value of P(0, z) at 
2 = A and, hence, P(0, A) would have to be 
smaller than P(0, 0). This case can only be 
realized if pt(0.5’A) was smaller than pt(0) 
for some t > t' (t = -t- y% since pt=o(0.5 • A) 
is, by definition of the bond path, larger than 
Pt=o(0). It then follows that dpt(z)/dz would 
be negative for i > t'. This is impossible be¬ 
cause the shape of the zero-flux surface allows 
only positive values of dp(z)/dz for z >0. 
The condition p^+i > p, for all i has thus 
been proved wrong by contradiction. As the 
partial derivative of P(0, z) with respect to 
the z coordinate at the bond critical point 
cannot be negative and because it could only 
be zero for a homonuclear diatomic, it fol¬ 
lows that it has to be positive, that is Pi+i < pf. 
Since Pi assumes a maximum at the center 
of atom A, it is obvious that the partial 
derivative of P(0, z) with respect to the z co¬ 
ordinate is negative for some i > icriticah the 
condition p, < pf+i is true for some values of 
i but not for all. At the critical value of i the 
slope of SP(0, z)/8z changes its sign; that is 
z = -i • A marks the projection bond critical 
point (PBCP). It can thus be concluded that 
the projection bond critical point will always 
be displaced toward the less polarizable 
atom. The value of the displacement will be 
called Abcp- 

Consider now a similar set of volume ele¬ 
ments Vj. The relation between the volume 
elements V} and Ui is shown schematically 
in Figure 7. Each element V, is contained be¬ 

Figure 7. The basis areas of the volume elements Ui 
and Vj are shown in the xz plane illustrating the analogy 
between the volume elements. 

tween two planes that are parallel to each 
other, separated by A, perpendicular to the 
xz plane and follow the function Xi = f{z) 
and X2 = f{z). In addition the condition is 
imposed that atom A lies in the middle be¬ 
tween these two planes. To complete the 
definition of the volume elements V} the 
planes Af^„(n = 0... n) are defined that are 
perpendicular to the two previously defined 
planes and to the xz plane. In the special 
case of the functions x = f{z) being simply 
Xi = 0.5 • A and X2 = -0.5 • A, the volume ele¬ 
ments Vj and Ui become identical. Analogous 
to the definition of Uq, the volume element 
Vo is defined as that volume element that 
contains part of the demarcation line D^ix, z) 
in its basis area. For exactly the same rea¬ 
son which causes the position of the pro¬ 
jected bond critical point to deviate from the 
position of the bond critical point of the elec¬ 
tron density by Abcp, o,ll points of the demar¬ 
cation line Dd(x, z) are displaced by a value 
Ai /- (the index / indicates that Ai^ depends 
on the function x = fiz)) toward atom A to 
form the demarcation line Ddix, z) of the 
projection electron density function P(x, z). 

The presented arguments relating the lines 
Dd and Dp show that all the points of Ddix, 
z) are shifted toward atom A along the line 
defined by each point of Ddix, z) and atom A. 
IPP deviates from IPP^d because all the elec¬ 
trons in volume elements Ui and Vj located 
between the lines Dd and Dp are not assigned 
to atom A, in contrast to the ideal case. If 
this amount of electrons is referred to as 
the following relation between IPP and IPPjd 
is obtained: 

IPP = IPPid - (4) 

Insertion of Eq. (4) into Eq. (1) yields the re¬ 
lation between IPP and IBP: 

IPP = IBP + E(PVd,J - (5) 
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Limiting Cases 

To compare the values of the projection 
population with IBP in dependence of the 
bond polarity the term AP 

AP = E{PVd,,) - (6) 

needs to be examined. Equation (6) is first 
examined with regard to the sign of AP and 
values of AP, E(PVd„) and E^ are discussed 
later. 

The zero-flux surface dissects the volume 
V^D into an inner and an outer component. 
The numbers of electrons contained in these 
components of will be called and 
E^'^y respectively. E^ is simply the sum of 
its two components: 

pinner i pouter   p /n\ 
■^AD -^AD ~ -^AD WJ 

APVrf „ is defined as that part of the vertical 
polarization volume that remains after sub¬ 
traction of the volume common to PV^.o and 

and the number of electrons in APVd „ is 
denoted £is Ei^PV^v)- EiPY^v) is related with 
Ei^PVa,,) by 

E(APVd,„) + = EiPVa,,) (8) 

Introduction of Eqs. (7) and (8) into Eq. (6) 
yields for AP 

AP = E(^PVd,,) - E^^^ (9) 

With Eq. (9) two cases may be differenti¬ 
ated. For the limiting case of a bond be¬ 
tween atoms with a small electronegativity 
difference (low bond polarity) the relation 

> Ei^PVa,,) (10a) 

should hold since all points in the volume 
^PVd,v are in a region of low electron density 
whereas the electron density is compara¬ 
tively higher at all points in AP be¬ 
comes negative in this case. Considering 
Eq. (5), Eq. (10a) can be rewritten as 

IPP < IBP; limit I (10b) 

In this case, limit I, the IPP value of the less 
polarizable atom is smaller than IBP. 

The reverse of relation (10a), namely 

E^^^^ < Eit^Vd,,) (11a) 

can be realized for highly polar systems. 
Again, relation (11a) can be restated using 
Eq. (5) as 

IPP > IBP, limit II (11b) 

and the conclusion is reached that the IPP 

value of the less polarizable atom of a highly 
polar diatomic is larger than IBP. 

Depending on the polarity of the bonding, 
the IPP value of the less polarizable atom 
can either be smaller (limit I) or larger 
(limit II) than IBP, and IPP may become in- 
cidently identical with IBP by cancellation 
of the terms and E(APVd„). If it were 
possible to classify bonds as belonging to one 
of these two limiting cases {vide infra) the 
sign of AP would allow an important state¬ 
ment as to whether IPP is larger or smaller 
than IBP. Moreover, this analysis suggests 
an alternative mode of demarking P(x, z) 
that allows for the determination of the 
maximum error associated with the projec¬ 
tion population of atoms in bonding situa¬ 
tions that follow limit I. The primary role in 
this discussion falls to IPPid. 

A New Projection Population: IPP2 

Introduction of Eq. (1) into Eq. (10b) gives 
the relation 

IPP < IBP < IPP id; limit I (12) 

and introduction of Eq. (4) into Eq. (11b) 
gives the corresponding relation for limit II: 

IBP < IPP < IPP id; limit II (13) 

These two relations allow for several con¬ 
clusions. First, for any diatomic molecule 
IBP of the less poleu'izable atom will always 
be smaller than IPPjd; IPPid thus defines an 
upper limit of the population of atom A. 
A similar relation does not hold for IPP. Sec¬ 
ond, if the bond polarity is such that relation 
(12) is valid, then IBP falls between the two 
projection populations. IPP and IPPjd thus 
determine the lower and the upper limits 
to IBP. 

In addition, the arguments presented sug¬ 
gest that IPPjd will be a better approxima¬ 
tion to IBP than IPP in the partitioning of 
bonds belonging to the case typified by limit I. 
IPP is too small compared to IBP by E^®*" - 
E(APVdi;)» and IPPjd is too large compared to 
IBP by E^"®' + E{^PVd,„). If the curvature 
of the zero-flux surface becomes rather small, 
which happens in strongly bonded systems 
with low bond polarities {vide infra), then 
E{^PVd,v) becomes negligible and IPP (IP¬ 
Pjd) will approximately be too small (large) 
by Ei£“®'‘ (E^®B‘®0 compared to IBP. Since 
El?f®'’»EAz,®'*^®", it then follows that IPPjd 
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has to be the better approximation to IBP. 
This conclusion can be reached qualitatively 
from a probably more familiar perspective. 
Consider the projection functions of the TToop- 
and the (p-TToop) electron densities. The ttoop 
density incorporates the contributions to 
p(r) associated with MOs and the (p-TToop) 
density incorporates all others.®® Since po¬ 
larization of the a density is comparatively 
small and because the in-plane tt MOs have 
no density along the bond, the bond critical 
point and the projection bond critical point 
of the (p-TToopl-density will coincide to a very 
good approximation. It is then the projection 
of the TToop electron density that is primarily 
responsible for the deviation between the 
critical points BCP and PBCP as a result of 
polarization of the TToop density toward the 
less polarizable atom. The use of z) 
will assign too much of the projected tToop 
density to atom A, whereas the use of Dpix, 
z) will assign too little of the (p-TToop) density 
to atom A. In bonds of low polarity, the mag¬ 
nitude of the projected (p-TToop) density is 
much larger than is the magnitude of the 
projected TToop density. For example, the val¬ 
ues of the projected (p-TToop) and the den¬ 
sities, respectively, calculated at 6-31G* for 
N2 and for ethine are as follows (in e a.u.“^): 
0.93 and 0.31 for N2; and 0.67 and 0.24 for 
ethine. The c-density accounts for about 
75% of the projected total density in these 
molecules. In systems with low bond polari¬ 
ties it thus appears more important to ap¬ 
proximate the partitioning of the projected 
(p-TToop) density in the best possible way, 
than it is to partition the ttoop density in the 
best possible way. 

The recognition of IPPfd as an important 
parameter suggests that the integration of 
P(x, 2) be performed in two ways. Aside from 
the determination of IPP by use Dpix, 2), it 
is suggested to integrate Pix,z) using the 
cross-section 2) as a boundary line to 
determine IPPuf. It is suggested to refer to 
IPPjd as IPP2. The index "ideal” is self- 
explained in the present context. Taken out 
of this context, however, the index may lead 
to unwarranted implications as to the accu¬ 
racy of the value. 

APPLICATIONS 

Computational Aspects 

Wavefunctions were calculated with the 
program GAUSSIAN82.®^ The 6-31G* basis 

set®^ was used for the diatomic molecules 
and the 3-21+G basis set®® was used for the 
anions. Structures were optimized or taken 
from the literature.®®’®*’®® Projection func¬ 
tions and cross-sections of p(r) were calcu¬ 
lated with the program PROJ by Collins et 
al. and others®*”®® with the usual grid spac¬ 
ing of 0.2 a.u. Contour maps were generated 
and the program DEMARK written by 
McDowell et al.®^ was used for the determi¬ 
nation of the boundary lines Dp for P(x,2) 
and Dd for p(r) and for the integration of 
P(x, 2) within the closed regions demarked by 
Dp and D^ to determine the projection popu¬ 
lations IPP and IPP2, respectively. Bond 
properties were determined with Biegler- 
Konig’s program EXTREME®® and atomic 
properties were calculated with the program 
PROAIMS written by Biegler-Konig and 
Duke.®’ Most calculations were carried out 
on a VAX-11/750 computer and MicroVax II 
computers and workstations. Atomic prop¬ 
erties were computed with a CSPI Maxim- 
64 array rocessor hosted by a MicroVax II 
system. 

The locations of the projection bond criti¬ 
cal points and of the bond critical points de¬ 
termined from the grid data obtained with 
PROJ are given by the parameter F and F2, 
respectively. F (F2) is defined for the bond 
A—B as the fraction of the distance between 
atom A and the PBCP (BCP) with respect to 
the bond length —B). F and F2 were cal¬ 
culated, to a good approximation, assuming 
linear (projection) bond paths. Bond proper¬ 
ties determined with EXTREME were char¬ 
acterized by the values Ta, Tb, and F3. The 
value of Ta (re) gives the distances of atom A 
(B) from the bond critical point of the AB 
bond in angstroms. The parameter F3 is 
analogous to the F2 value; different names 
are used because the F3 values were deter¬ 
mined by a Newton-Raphson walk, whereas 
the F2 values were determined by least- 
squares fit procedures of grid data.®’ The 
agreement between the F2 and the F3 value 
is satisfactory {vide infra) and Abcp values 
given are based on the F2 values. The val¬ 
ues MPD and MD are the minimum values 
along the projection bond path and along the 
bond path, respectively. MD values deter¬ 
mined from the grid data produced with 
PROJ and EXTREME are virtually the 
same. Critical points were characterized by 
their eigenvalues Xj of the Hessian matrix of 
p(r), by the values of the Laplacian of the 
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density V\p) and by the bond ellipticities 
g 23,27 Kinetic energies of the atoms, T' and 
T' (corrected for the virial defect of the wave- 
fiinction), the deviations between the sum of 
the integrated kinetic energies of the atoms 
and kinetic energy of the molecule, and the 
L values axe reported to characterize the ac¬ 
curacy of the integrations. 

Diatomic Molecules 

Pertinent results are summarized in 
Table I. Bond properties and further results 

of the three-dimensional integrations are 
given in tables in supplemental material (see 
Ref. 60), and will be discussed elsewhere. 
Contour maps of P(x,z) and of cross-sections 
of p(r) containing the appropriate demarca¬ 
tion lines can be obtained from the author. 

The demarcation lines Dp are displaced to¬ 
ward the less polarizable atom compared to 
Dd] F2 is larger than F in all cases. TTie Abcp 
values (Table 11) are generally between 0.01 
and 0.10 A. Relative displacements are gen¬ 
erally 5% or less, but larger deviations are 

Table I. Electron density analysis of diatomic molecules.‘~* 

AB d(AB) MP IBP F MPD IPP F2 MD IPP2 

LiF 1.555 2.339 2.054 0.39 0.159 2.088 0.40 0.076 2.114 
LiCl 2.072 2.498 2.059 0.29 0.103 2.084 0.33 a037 2.128 
NaF 1.885 10.296 10.069 0.44 0.135 10.073 0.49 0.060 10.116 
NaCl 2.393 10.332 10.081 0.39 0.091 10.097 0.43 0.031 10.139 
BeO 1.296 3.596 2.268 0.32 0.434 2.450 0.35 0.195 2.530 
BeS 1.733 3.653 2.372 0.31 0.311 2.597 0.32 0.101 2.705 
MgO 1.739 11.185 10.689 0.43 0.226 10.719 0.47 0.084 10.756 
MgS 2.149 11.538 10.672 0.39 0.190 10.749 0.40 0.055 10.832 
BN 1.239 4.690 3.344 0.34 0.619 3.643 0.34 0.229 3.767 
BP 1.637 4.152 5.551 0.52 0.463 5.270 0.58 0.128 5.558 
CO^ 1.114 5.732 4.595 0.29 0.905 4.753 0.39 0.491 4.951 
CS 1.520 6.032 6.873 0.50 0.720 6.170 0.62 0.266 6.899 
SiO 1.487 13.350 12.437 0.42 0.461 12.569 0.43 0.188 12.640 
SiS 1.917 13.605 12.706 0.33 0.375 12.756 0.39 0.123 12.871 
PN 1.455 14.591 13.403 0.42 0.633 13.629 0.42 0.240 13.676 
FCl 1.613 9.363 9.501 0.52 0.483 9.428 0.54 0.191 9.571 

* ^1* States calculated at RHF/6-31G*. 
*’ The minimvun value MD (MPD) of the electron density (projection function) along the bond is given in e a.u."® 

(e a.u."^). 
' Bond lengths d(AB) in A. The distance of the bond critical point PBCP (BCP) from atom A is given by the frac¬ 

tion F (F2) of the lx)nd length d(AB). 
^ Values of IBP, IPP, IPP2, and of Mulliken populations (MP) are given for the less polarizable atom in electrons. 
‘ Most structures taken frnm Ref. 54. 
^ At RHF/6-31G** a charge of +1.4 was reported for carbon in CO, cf. Ref. 28d. 

Table II. Comparison of integrated populations IPP, IPP2, and IBP. Diatomic molecules. 

Atom 
EiPV^J 
IPP2-IBP IPP2-IPP 

AP 
IPP-IBP ^BCP 

LiF: Li 0.060 0.026 0.034 0.013 
LiCl: Li 0.069 0.044 0.025 0.088 
NaF: Na 0.047 0.043 0.004 0.097 
NaCl: Na 0.058 0.042 0.016 0.098 
BeO: Be 0.268 0.080 0.182 0.036 
BeS: Be 0.333 0.108 0.225 0.012 
MgO: Mg 0.067 0.037 0.030 0.073 
MgS: Mg 0.160 0.083 0.077 0.021 
BN: B 0.423 0.124 0.299 0.005 
BP: B 0.007 0.288 -0.281 0.097 
CO: C 0.356 0.198 0.158 0.109 
CS: C 0.026 0.729 -0.703 0.195 
SiO: Si 0.203 0.071 0.132 0.012 
SiS: Si 0.165 0.115 0.050 0.110 
PN: P 0.273 0.047 0.226 0.011 
FCl: F 0.070 0.143 -0.073 0.044 
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found for CO (10%) and CS (12%, Abcp = 
0.20 A). No significant correlations are found 
between the absolute or the relative dis¬ 
placements and parameters that reflect the 
bond polarity. 

The halides of the alkali metals are what 
one might call typical ionic molecules.®® For 
these molecules, relation 13 should hold and 
the data in Table 11 show this to be true. IPP 
and IPP2 overestimate the metal population 
by AP and E{PVd,v)> respectively, and IPP2 
deviates more from IBP than does IPP. The 
vertical polarization volume of LiCl, for ex¬ 
ample, contains E{PVd,v) = 0.07 electrons 
which are falsely assigned to Li if the verti¬ 
cal curtain-type partitioning defined by Da 
is used. Integration of P(x,z) using Dp re¬ 
duces the error caused by PVd,v hy E^ = 
0.04 electrons and IPP deviates AP = 0.03 
electrons from IBP. The values of AP and of 
E{PVd,v) are rather small for the halides and 
projection populations are excellent approxi¬ 
mations to IBP. 

All other molecules have more shared 
electron density than the alkaline halides. 
The values of MD and MPD are increased 
and/or the lines Da (and Dp) engulf atom A 
less tightly. For example, IBP(Be) for BeO is 
2.27 electrons resulting in a charge of +1.73 
for Be. IPP and IPP2 are 2.45 and 2.53 elec¬ 
trons, respectively, and relation 13 applies. 
EiPVd.v) is 0.27 for BeO; about fourfold 
larger than for the halides. Demarcation of 
Pix,z) using Dp reduces the deviation from 
IBP by E^ = 0.08, but IPP remains 0.18 too 
high. The IBP value of boron in BN shows a 
charge of +1.66; indicating comparable 
charge transfer in BN and BeO. The triple- 
bonded nitride BN shows the largest value 
of E{PVd,v) of the diatomics, 0.42 electrons 
(Table II and table in supplemental mate¬ 
rial, Ref. 60). The critical points of P{x,z) 
and of p(r) of BN are displaced slightly, but 
Dd and Dp differ away from the intemuclear 
axis. The differences between Dp and Dd re¬ 
sult in an IPP of 3.64 electrons; still 0.31 
larger than IBP. As with BeO and BN, sig¬ 
nificantly overestimated IPP and IPP2 val¬ 
ues are found (Table II) and for all of these 
molecules, except BP,CS, and FCl, relation 
13 applies, that is IBP < IPP < IPP2. 

The molecules BP, CS, and FCl satisfy re¬ 
lation 12, that is IPP < IBP < IPP2 for the 
less polarizable atom. Note that the less po¬ 
larizable atoms in these molecules are nega¬ 

tively charged (A is electron deficient in all 
of the other diatomics); the IBP values are 
5.55 (B),6.87 (C), and 9.50 (F) electrons, re¬ 
spectively. The 77- and o--withdrawing abil¬ 
ity of the less polarizable atoms is reflected 
in the F values; the basins of the less poleir- 
izable atoms extend over more than 55% of 
the bond in these cases; even so the more po¬ 
larizable atom is a second-row atom. As al¬ 
ways, IPP2 overestimates the population of 
the less polarizable bonding partner, but the 
EiPVdv) values are comparatively small 
(0.01 (BP), 0.03 (CS), and 0.07 (FCl) elec¬ 
trons). In contrast to the other diatomics, the 
E^ values are larger than the E{PVd,v) val¬ 
ues, and the IPP values are smaller than the 
IBP values by 0.28 and 0.07 electrons for BP 
and FCl, respectively. CS stands out with an 
immense Eu) value of 0.73 electrons and a 
AP value of 0.70 electrons. A plot of a cross- 
section of p{x,z) of the CS bond shows a wide 
range between the atoms with high electron 
density and with a small gradient of the 
electron density. For this type of bonding 
situation it has been argued above that 
IPP2 should be closer to IBP than IPP. The 
results for BN, CS, and FCl confirm this 
argument.®® 

Three distinct shapes of the demarcations 
lines {Dd or Dp) are found. Large curvatures 
are found for highly polar molecules and 
small curvatures are found for molecules 
with a comparatively little charge transfer, 
and the lines show a steady increase in cur¬ 
vature with distance from the intemuclear 
axis. Semipolar molecules form the third 
group (e.g., BN, CO, SiO, SiS, and PN). For 
these molecules the part of the demarcation 
line in the vicinity of the intemuclear axis 
is distinctly curved and, moreover, signifi¬ 
cantly more curved than the parts of Dd that 
are farther away. In other words, extrapola¬ 
tion of those parts of the demarcation line 
that are farther away from the axis (>0.2- 
0.3 A) would intersect the axis between 
atom A and the bond critical point. Such a 
shape of Dd necessarily causes an increase of 
PVd,v, and AP in turn, compared to molecules 
with smooth demarcation lines. 

Polyatomic TT^Copjugated Anions 

The approximations intrinsic to projection 
populations might be discussed for more 
complex planar molecules in a similar fash- 
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ion as for the diatomics. The partitioning of 
a bond to a terminal fragment could be dis¬ 
cussed in analogy, and for fragments within 
the molecular skeleton the effects of the ap¬ 
proximative partitioning of several bonds 
would have to be examined. In contrast to 
the diatomic molecules the zero-flux sur¬ 
faces of planar molecules are only C, sym¬ 
metric. The reduced symmetry does not 
affect the validity of any of the equations be¬ 
cause all of the above considerations require 
only the point group C* to be a subgroup of 
the symmetry point group of the molecule. 
The vertical polarization volume, the key 
element of the discussion, has been intro¬ 
duced as a part of the polarization volume. 
The polarization volumes of fragments can¬ 
not be defined in analogy to the diatomic 
molecules because of the shape of Daix^). 
However, without any loss in logic it can be 
abstracted from the way the vertical polar¬ 
ization volume was introduced to the way it 
is defined, namely as the volume contained 
between the zero-flux surface and the verti¬ 
cal curtain surface Six,y,z) for which all 
S(x,2:) are elements oiDdix^). If, in addition, 
the surface S(x,y,z) and the corresponding 
surface T(x,y^) — a vertical curtain defined 
by Dpix,z) — don’t cross, then all the above 
considerations remain valid. 

Here some 7r-conjugated anions are consid¬ 
ered. The electronic structures of the anion 
of acetaldehyde (1), of the isomeric carban- 
ions of ethylimine {syn-2 and anti-3), of allyl 
anion (4), and of the isomeric carbanions of 
acetaldoxime (sy/i-5 and anti-6), have been 
analyzed. The contour map of the cross- 
section of the electron density of 1 in the 
molecular plane ixz plane) is shown on top 
in Figure 8.®® Some geometries were re¬ 
ported recently®® and the others®^ are given 
in Ref. 60. The study of the electronic struc¬ 
tures of these molecules is important for the 
understanding of CC bond-forming reac¬ 
tions.®®’®® A more detailed analysis of the 
bond properties (supplementary table), 
atomic properties of 1-6 other than popula¬ 
tion (supplementary table) and chemical im¬ 
plications will be presented elsewhere. 
Results pertinent to the present discussion 
are summarized in Tables III, IV, and V. 

The positively charged CH group is the 
less polarizable bonding partner in both of 
the bonds X—CHCHg (X = O, NH, or NOH) 
and CH2—CHX. The projection bond criti- 
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Figure 8. The cross-section of the electron density in 
the molecular plane (top) and of the projection func¬ 
tion P(x, z) of the enolate ion of acetaldehyde, 1. Con¬ 
tour levels are from 0.005 to 0.705 with a level spacing 
of 0.05c a.u."® for pix, z) and from 0.005 to 0.705 with 
a level spacing of 0.05e a.u."^ for Pix, z). 

cal points of the CC and the CX bonds all 
are displaced toward the CH carbon com¬ 
pared to the bond critical points. The dis¬ 
placements (Table III) are comparable to 
those found for the diatomics. 

The Abcp values are largest for the CC 
bonds. The IBP values (Table III) indicate 
charges ranging from -0.24 (5) to -0.43 (2) 
for the CH2 fragments, and they indicate CH 
charges in the range between +0.30 (5) and 
+0.52 (1) for the heteroallylic anions, but a 
charge of -0.16 for allyl anion. All of the CC 
bonds are moderately polar with populations 
differences between the bonded fragments of 
0.26 for 4 and of about 0.55-0.85 for the 
other anions. As with the diatomic molecules 
with low bond polarities, relation 12 applies 
to the CC bonds. Since the CH2 group is the 
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Table m. Electron density analysis of ir-coiyugated anions.'"*’ 

Bond F MPD IPP Bond F2 MD IPP2 IBP 

CH2CHO-, 1 
CC(0) 0.53 0.672 CH2 8.523 CC(0) 0.44 0.308 CH2 8.240 8.357 
OC 0.65 0.634 0 9.238 OC 0.63 0.319 0 9.257 9.166 

CH 6.239 CH 6.503 6.477 
CH. 0.61 0.257 H. 1.173 1.028 
CH„ 0.64 0.256 H„ 1.174 1.059 
CH. 0.63 0.258 H, 1.155 1.075 

C(C) 5.893 6.270 
C(0) 5.348 5.402 

syn-CH2CHNH-, 2 
CC(N) 0.53 0.655 CH2 8.532 CC(N) 0.47 0.294 CHa 8.369 8.427 
NC 0.63 0.655 NH 9.019 NC 0.58 0.317 NH 8.931 8.952 

CH 6.449 CH 6.700 6.624 
NH 0.68 0.306 H„ 0.864 0.774 
CH. 0.64 0.252 H. 1.188 1.056 
CH„ 0.64 0.253 H„ 1.186 1.057 
CHc 0.62 0.261 He 1.107 1.042 

N 8.067 8.178 
C(C) 5.995 6.314 
C(N) 5.593 5.582 

an/i-CHaCHNH- -.3 
CC(N) 0.50 0.668 CH2 8.519 CC(N) 0.45 0.302 CH2 8.299 8.356 
NC 0.63 0.650 NH 9.020 NC 0.58 0.314 NH 8.939 8.951 

CH 6.462 CH 6.762 6.692 
NH 0.64 0.309 H„ 0.891 0.781 
CH. 0.60 0.257 H. 1.166 1.026 
CH„ 0.63 0.254 Ha 1.225 1.067 
CH. 0.65 0.254 He 1.141 1.077 

N 8.048 8.170 
C(C) 5.908 6.262 
C(N) 5.621 5.615 

CHjCHCHz", 4“ 
C.c, 0.53 0.651 CH2 8.615 c,c. 0.45 0.292 CH2 8.325 8.419 

CH 6.770 CH 7.350 6.692 
CH. 0.59 0.254 H. 1.227 1.056 
CH„ 0.57 0.253 H„ 1.261 1.069 
CH 0.62 0.257 H 1.155 1.056 

c, 5.837 6.294 
Ce 6.195 6.108 

syn-CH2CHNOH-, 5 
CC(N) 0.50 0.673 CH2 8.419 CC(N) 0.45 0.302 CH2 8.200 8.242 
NC 0.63 0.654 NOH 17.129 NC 0.62 0.318 NOH 17.120 17.067 
NO 0.50 0.438 OH 9.351 NO 0.42 0.199 OH 9.428 9.385 

CH 6.453 CH 6.680 6.691 
N 7.778 N 7.696 7.682 

OH 0.74 0.335 He 0.686 0.554 
CH. 0.60 0.263 H. 1.150 0.986 
CH„ 0.63 0.256 H„ 1.200 1.060 
CH. 0.60 0.266 He 1.110 1.021 

0 8.742 8.831 
C(C) 5.850 6.196 
C(N) 5.570 5.670 

(cont.) 

more polarizable bonding partner, relation 
12 implies the ordering IPP > IBP > IPP2 
for the CH2 populations. The absolute devia¬ 
tions between IPP and IBP are larger than 
between IPP2 and IBP (Table IV). 

The populations indicate that the negative 
charge is localized, to a great extent, on the 
heteroatom (Table III). The CX bonds have 
charge differences in excess of 1.25 between 

1.25 between the bonded fragments. The 
lowest bond polarities are found for 2 and 3, 
and relation 12 applies in its formulation for 
the more polarizable bonding partner, 
IPP2 < IBP < IPP. The populations of 1,5, 
and 6 show the limitations imposed on the 
systematic evaluation of the approximations 
of IPP and IPP2 of polyatomic molecules by 
the complexity of the zero-flux surface. For 1 
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Table m. (continued) 

Bond F MPD IPP Bond F2 MD IPP2 IBP 

anti-CH2CHNOH -.6 
CC(N) 0.53 0.668 CH2 8.456 CC(N) 0.44 0.299 CH2 8.206 8.293 
NC 0.64 0.652 NOH 17.124 NC 0.65 0.318 NOH 17.108 17.066 
NO 0.48 0.420 OH 9.376 NO 0.42 0.187 OH 9.462 9.405 

CH 6.420 CH 6.687 6.638 
N 7.748 N 7.646 7.661 

OH 0.79 0.335 H„ 0.620 0.551 
CH. 0.59 0.255 H. 1.190 1.027 
CHa 0.64 0.258 H„ 1.158 1.048 
CH, 0.63 0.267 H, 1.056 0.975 

0 8.842 8.855 
C(C) 5.858 6.219 
C(N) 5.631 5.663 

* Calculations are at RHF/3-21+G. 
” See Table I, (b-d). 
' Syn or anti denote a cis or trans relation, respectively, between the CH2 and the E groups (E = H, OH) at N. Hj 

is connected to the C-atom that is bonded to X (X = O, NH, NOH). H, (HJ is the CH2 hydrogen that is syn- (anti-) 
oriented with respect to X. Ho (H„) is bonded to O (N). 

^ Ct (Cc) is the terminal (central) C-atom of allyl anion. 
* Compare Ref. 62. 

Table FV. Comparison of integrated populations IPP, IPP2, and IBP. 7r-coiyugated anions. 

Group 
E(PVa.,) 

IPP2-IBP 
E^d 

IPP2-IPP 
AP 

IPP-IBP 
E(PVd.,) 

IPP2-IBP 
Ead 

IPP2-IPP 
AP 

IPP-IBP 

CH2CHO-, 1 
CH2 -0.117 -0.283 0.166 
CH 0.091 0.264 -0.238 
0 0.026 0.019 0.072 

i^n-CH2CHNH-, 2 anri-CH2CHNH , 3 
CH2 -0.058 -0.163 0.105 -0.057 -0.220 0.163 
CH 0.076 0.251 -0.175 0.070 0.300 -0.230 
NH -0.021 -0.088 0.067 -0.012 -0.081 0.069 

CH2CHCH2', 4 
CH2 -0.094 -0.290 0.196 
CH 0.186 0.580 -0.394 

syn-CH2CHNOH-, 5 anri-CHaCHNOH’, 6 
CH2 -0.042 -0.219 0.177 -0.087 -0.250 0.163 
CH -0.011 0.227 -0.238 0.049 0.267 -0.218 
NOH 0.053 -0.009 0.062 0.042 -0.016 0.058 
OH 0.043 0.077 -0.034 0.057 0.086 -0.029 
N 0.014 0.082 0.096 -0.015 -0.102 0.087 

Table V. Comparison of integrated populations of 7r-copjugated anions. E(PVd„) Values of hydrogens and atoms 
bonded to hydrogen(s). 

Atom 1 2 3 4 5 6 

C(C) -0.377 -0.319 -0.354 -0.457 -0.346 -0.361 
C(X) -0.054 0.011 -0.006 0.087 -0.100 -0.032 
H. 0.145 0.132 0.140 0.171 0.164 0.163 
H. 0.115 0.129 0.158 0.192 0.140 0.110 
H, 0.080 0.065 0.064 0.099 0.089 0.081 
N -0.111 -0.122 
H„ 0.090 0.110 
0 -0.089 -0.013 
Ho 0.132 0.069 

• CH2CHX- with X = 0, NH, NOH, and CH2. 
See Table in, c. 
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EiPVa,v)yE^, and AP all are positive. The 
ordering of the O populations is IPP2 > 
IPP > IBP, although Dp is displaced toward 
the CH carbon with respect to IPP2 is 
larger than IPP by E^ = 0.02 because the 
surfaces S{x,y,z) and Tix,y,z) between oxy¬ 
gen and the vinyl group cross. In the case of 
the oxime anions E{PVd.v) and AP are posi¬ 
tive while the values are negative. Nei¬ 
ther relation 12 nor relation 13 apply here 
and the reasons for the deviations between 
the integrated populations remain obscured. 
In any case, the comparison of the values of 
EiPVd,„) and AP reveals demarcations of 
PiXyZ) with Dd result in X populations that 
are in better agreement with IBP than are 
the IPP values. 

Polarization causes significant positive 
charges of the central CH groups {vide 
supra). IPP greatly overestimates this elec¬ 
tron depletion since IPP(CH) contains some 
contamination from the vertical polarization 
volumes of the X and of the CH2 groups. The 
electron density in PVd.v causes the demar¬ 
cation line to be shifted toward the CH car¬ 
bon and causes the neglect of o'-density in 
IPP(CH). The populations of the CH groups 
illustrate the important point that, by using 
IPP2 instead of IPP, a better assignment of 
the O’-density is assured. 

A final aspect concerns projection H popu¬ 
lations. The regions between hydrogen and 
first-row elements usually contain no projec¬ 
tion bond critical point, that is, demarcation 
lines Dp are not defined. In contrast, the 
cross-sections of p(r) show well-defined val¬ 
leys and IPP2 values can be determined as 
upper limits of the H populations. The differ¬ 
ences E{PVd,v) between the IPP2 and the 
IBP values of the H atoms in 1-6 are listed 
in Table V. The E{PVd,v) values are compa¬ 
rable to the respective values for fragment 
populations, but the relative error is larger, 
and IPP2 values of hydrogens that are 
connected to first-row atoms therefore have 
little significance. Consequently, projection 
populations of atoms that are bonded to hy¬ 
drogens are also of limited value (Table V). 
Projection populations of hydrogen atoms 
that are bonded to second-row atoms are 
more meaningful. Minima of P{x,z) exist 
along the projected bond paths in these 
cases, and the populations are affected less 
by the electron density in the vertical polar¬ 
ization volume.®®’®^ 

SUMMARY AND CONCLUSION 

The differences between projection popu¬ 
lations and the populations determined by 
integration over basins have been anal3rzed 
for diatomic molecules using the properties 
of the zero-flux surfaces. The derived rela¬ 
tions can be applied to polyatomic planar 
molecules. Deviations between IPP and IBP 
are attributed to two systematic errors. The 
first of these is intrinsic to projection tech¬ 
niques and consists in the replacement of 
the three-dimensional zero-flux surface by a 
vertical curtain-type surface. The second 
error relates to the inequality of the demar¬ 
cation line Dp of the projection function and 
the cross-section Dd of p(r). This error can be 
minimized in some cases if Dd is used in¬ 
stead of Dp to obtain the newly introduced 
projection population IPP2. It has been 
shown that the IPP2 value of the less polar¬ 
izable atom is larger than IBP by the num¬ 
ber of electrons in the vertical polarization 
volume, E{PVd,v)- The projection of the elec¬ 
tron density causes a shift of all points of Dd 
toward the less polarizable atom. As a result, 
IPP is smaller than IPP2 by the term E^), 
and IPP and IBP differ by AP = E{PVd,v) - 
Euy.Eu) can be smaller or larger in absolute 
value than E{PVd,v) and two limiting cases 
have to be considered. For the populations of 
the less polarizable atom, the relation 12, 
IPP < IBP < IPP2, holds in the limiting 
case where AP < O, and the relation 13, 
IBP < IPP < IPP2, holds if AP > O. The 
physical significance of the values E{PVd,v) 
and Pad niay be obscured in polyatomic pla¬ 
nar molecules due to increased complexity of 
the zero-flux surfaces of Vp(r). In these cases 
E{PVd,v), Pad» and AP provide only numeri¬ 
cal differences between the populations. Con¬ 
clusions of the analysis have been tested and 
confirmed by calculations of populations for 
diatomic molecules and for simple poly¬ 
atomic anions. For any diatomic molecule 
the population IBP of the less polarizable 
atom will always be smaller than the value 
of IPP2, that is, IPP2 determines an upper 
limit to IBP of the less polarizable atom. For 
bonds with low bond polarities relation 12 
applies and IBP falls between the two pro¬ 
jection populations, that is, IPP and IPP2 
define the maximal error associated with the 
projection populations. IPP provides an ex¬ 
cellent approximation for highly polar sys- 
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terns; IPP2 provides a better and equally 
satisfying approximation for systems of low 
bond polarity. In the intermediate semipolar 
bonding situations the deviations between 
the projection populations and IBP may ex¬ 
ceed 0.1 electrons. Such bonding situations 
can usually be identified by the shape of the 
demarcation line. Even in these cases projec¬ 
tion populations are much closer to IBP than 
are Mulliken populations, for example. IPP 
and IPP2 still give a reasonable qualitative 
description of the charge transfer. The appli¬ 
cation of integrated projection populations is 
justified by the efficiency of the integration. 
The sequence projection/demarcation/two¬ 
dimensional integration can be computed 
much faster®® than the sequence demarca¬ 
tion/three-dimensional integration. 
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