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Table S3.  Equilibrium Concentrations of Malate Solutions, Dilute Malic Acid, and of 
Malic Acid/Malate Buffers   

[H2A]0 [HA-]0 [H+] [H2A] [HA-] [A2-] pH 
HA- Salt Hydrolysis   

0.00 1.00 5.28E-05 1.16E-01 0.767319 0.116367 4.28 
0.00 0.30 5.24E-05 3.47E-02 0.229521 0.0347657 4.28 
0.00 0.10 5.26E-05 1.16E-02 7.67E-02 1.17E-02 4.28 
0.00 0.03 5.21E-05 3.46E-03 2.30E-02 3.51E-03 4.28 
0.00 0.01 5.16E-05 1.14E-03 7.67E-03 1.19E-03 4.29 
0.00 3.00E-03 4.89E-05 3.25E-04 2.30E-03 3.74E-04 4.31 
0.00 1.00E-03 4.37E-05 9.60E-05 9.64E-04 1.40E-04 4.36 
0.00 3.00E-04 3.29E-05 2.13E-05 2.24E-04 5.42E-05 4.48 
0.00 1.00E-04 2.16E-05 4.32E-06 6.98E-05 2.59E-05 4.67 
0.00 3.00E-05 1.15E-05 5.75E-07 1.74E-05 1.20E-05 4.94 
0.00 1.00E-05 5.72E-06 6.81E-08 4.14E-06 5.79E-06 5.24 

H2A Acid Dissociation   
1.00 0.00 1.85E-02 9.82E-01 1.85E-02 7.99E-06 1.73 
0.30 0.00 1.00E-02 2.90E-01 1.00E-02 7.93E-05 2.00 
0.10 0.00 5.74E-03 9.43E-02 5.72E-03 7.98E-06 2.24 
0.03 0.00 3.06E-03 2.69E-02 3.05E-03 7.90E-06 2.51 
0.01 0.00 1.71E-03 8.30E-03 1.69E-03 7.93E-06 2.77 

3.00E-03 0.00 8.69E-04 2.14E-03 8.53E-04 7.80E-06 3.06 
1.00E-03 0.00 4.49E-04 5.59E-04 4.33E-04 7.72E-06 3.35 
3.00E-04 0.00 2.00E-04 1.07E-04 1.86E-04 7.36E-06 3.70 
1.00E-04 0.00 8.80E-05 1.88E-05 7.44E-05 6.77E-06 4.06 
3.00E-05 0.00 3.32E-05 2.15E-06 2.25E-05 5.37E-06 4.48 
1.00E-05 0.00 1.34E-05 2.36E-07 6.12E-06 3.65E-06 4.87 

H2A/HA- Buffer   
0.01 1.00 5.50E-05 1.23E-01 7.75E-01 1.13E-01 4.26 
0.01 0.30 6.02E-05 4.12E-02 2.37E-01 3.13E-02 4.22 
0.01 0.10 7.75E-05 1.85E-02 8.30E-02 8.56E-03 4.11 
0.01 0.03 1.45E-04 1.13E-02 2.72E-02 1.49E-03 3.84 
0.01 0.01 3.48E-04 9.88E-03 9.89E-03 2.28E-04 3.46 
0.01 3.00E-03 8.45E-04 9.19E-03 3.77E-03 3.55E-05 3.07 
0.01 1.00E-03 1.32E-03 8.69E-03 2.29E-03 1.39E-05 2.88 
0.01 3.00E-04 1.58E-03 8.43E-03 1.86E-03 9.36E-06 2.80 
0.01 1.00E-04 1.66E-03 8.35E-03 1.75E-03 8.40E-06 2.78 
0.01 3.00E-05 1.69E-03 8.32E-03 1.71E-03 8.01E-06 2.77 
0.01 1.00E-05 1.70E-03 8.30E-03 1.70E-03 7.97E-06 2.77 

Malic acid is a diprotic acid with pK1 = 3.46 and pK2 = 5.10.    
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Table S4.  Equilibrium Concentrations of Solutions of Sulfuric Acid (1.0 M) and Bromate 

Salt (0.1 M) as a Function of the Acidity Constant K2 of Bromic Acid    

pK2 [H+] pH [BrO3
-] [HBrO3] 

-2.0 1.008 -0.003 0.099 0.001 
-1.8 1.007 -0.003 0.098 0.002 
-1.6 1.006 -0.003 0.098 0.002 
-1.4 1.005 -0.002 0.096 0.004 
-1.2 1.003 -0.001 0.094 0.006 
-1.0 1.000 0.000 0.091 0.009 
-0.8 0.995 0.002 0.086 0.014 
-0.6 0.989 0.005 0.080 0.020 
-0.4 0.981 0.008 0.072 0.028 
-0.2 0.971 0.013 0.062 0.038 
0.0 0.960 0.018 0.051 0.049 
0.2 0.949 0.023 0.040 0.060 
0.4 0.939 0.027 0.030 0.070 
0.6 0.931 0.031 0.021 0.079 
0.8 0.924 0.034 0.015 0.085 
1.0 0.920 0.036 0.010 0.090 
1.2 0.916 0.038 0.006 0.094 
1.4 0.914 0.039 0.004 0.096 
1.6 0.913 0.040 0.003 0.097 
1.8 0.912 0.040 0.002 0.098 
2.0 0.911 0.040 0.001 0.099 

 
Acidity constants of sulfuric acid pK11 = -3 and pK12 = +2.   
Case highlighted in yellow is exemplified in Figures 2 and 3.   
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Addendum A, Solving the Quartic and Quintic Polynomials  

When using Newton’s method to approximate the root of the quintic polynomial eq. 22 

describing the multi-equilibria in solutions of bromate (B-) in aq. sulfuric acid (H2A) as in Figure 

S6, the starting point for the iteration is important.  For starting values larger than 0.7 the Newton 

iterations converge to the root near 0.96.  However, for smaller positive starting points, the 

iteration converges to the largest negative root, which is close to zero.  This example illustrates 

the necessity to choose starting values that converge to the desired positive root.  A general 

algorithm might implement bisection until a root is trapped in a small interval and then switch to 

Newton’s method to rapidly refine the approximation.  More detailed accounts are available in 

textbooks on numerical methods.  For practical applications to equilibrium concentrations, 

appropriate starting values can be easily found by trial and error or by inspection of a computer 

generated graph.   	  

 

	  

Figure S6.  Part of the graph of the quintic polynomial eq. 22 describing the multi-equilibria in solutions 

of bromate (B-) in aq. sulfuric acid (H2A) for the set of equilibrium constants K11 = 103, K12 = 10-2, and K2 

= 1 and initial concentrations [H2A]0 = 1.0 M and [B-]0 = 0.1 M (α = 0.1, β = 1, γ = 0.1) is depicted.   
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Addendum B, Formulation of the Autonomous Ordinary Differential Equations   

An earlier, longer version of this section contained the following paragraph at the end:   

“Once all reaction rates are specified, the mathematical theory of ordinary differential equations 

ensures that for each choice of the initial concentrations there is a unique solution of the kinetic 

model equations that exists for some interval of time beyond the initial time, which we may 

always take to be the origin of the temporal variable.  In the case of acid dissociation, physical 

intuition suggests that the transient reaction proceeds to a steady state of constant species 

concentrations while all transient concentrations remain bounded.  The boundedness assumption, 

which can also be checked directly from the system of differential equations, ensures that each 

physically realistic solution of the differential equation model exists for all positive time.”   
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Proof that Eq. 23 Has Exactly One Real Positive Root 

Descartes’s rule of signs (Wang, X.  A Simple Proof of Descartes’s Rule of Signs.  The Amer. Math. 

Monthly 2004, 111, 525-526) can be used to demonstrate that the quartic eq. 23 has exactly one 

positive real root (which is [H+] at equilibrium).  This rule states that the maximum number of 

real positive roots is equal to the number of sign changes in the list of nonzero coefficients of the 

polynomial written in order of descending powers.  Recall the quartic polynomial 

 

 𝑧! + (𝐾!! + α)𝑧!  +  (−𝐾!+𝐾!!(𝐾!" + α− β))𝑧!     

           −𝐾!!(𝐾! − 𝐾!"α+ 2𝐾!"β)𝑧    −   𝐾!!𝐾!"𝐾! = 0      (eq. 23). 

 

To determine that there is exactly one positive real root (which is H!  at equilibrium), apply 

Descartes’ rule of signs, which states that the maximum number of real positive root is equal to 

the number of times the signs change in the list of nonzero coefficients of the polynomial written 

in order of descending powers.  For example, the coefficient list of the polynomial, a!𝑧! +

a!𝑧 + a! is {a!, a!, a!}, and the number of real roots is equal to the number of sign changes 

going down the list.  Applying this to eq. 23, the coefficient list is     1  ,𝐾!! + α  ,   𝐾!! 𝐾!" + α−

β −𝐾!  ,   𝐾!" 𝐾!"α− 2𝐾!"β− 𝐾!   ,−  𝐾!!𝐾!"𝐾!   .  Substituting for α and β, we find that 1 >

0, 𝐾!! + α =   𝐾!! + HA! ! + 2 A!! ! + B! ! > 0, −𝐾!!𝐾!"𝐾! < 0, and   𝐾!! 𝐾!"α−

2𝐾!"β− 𝐾! = 𝐾!! 𝐾!" −2 H!A ! − HA! − 𝐾! < 0.  But, the sign of the coefficient 

𝑆! ≔   𝐾!! 𝐾!" + α− β −𝐾! = 𝐾!! 𝐾!" + A!! ! − H!A ! − 𝐾! is undetermined.  The list of 

signs of the coefficients becomes {+,+, 𝑆!,−,−}.  Thus there is only one sign change 

independent of the sign of  𝑆!.  Therefore, the application of Descartes’ rule of signs shows that 

eq. 23 has at most 1 real positive root.   
  



S7	  
	  

Quartic Polynominal vs. Iterative Methods.  The combination of equilibrium constant 

expression eqs. 1 – 3 with the charge and mass balance eqs. 12 and 13 (absence of HB and B-) 

allows to express the proton concentration of an aqueous solution of the salt MHA as a function 

of [HA-] via  

                         H! = !!!!!" !!! !!!!!!
!!! !!!!

 .       (eq. S1) 

The derivation of this equation is provided below.   

Parker and Breneman employed eq. S1 in their iteration method.14  This equation relates the 

equilibrium concentrations of [H+] and [HA-].  The corresponding steady state concentrations are 

approximated with the method of successive approximation.6b  To begin the process, a tolerance 

τ is specified, the approximation [HA-]1 = [HA-]0 is made and eq. S1 is used to determine [H+]1.  

The concentrations [H2A]1 and [A2-]1 are computed in accordance with eqs. 2 and 3, respectively, 

using the concentrations [H+]1 and [HA-]1.  For, i = 1, 2, 3,…, the new concentration [HA-]i+1 is 

determined via eq. 13 as [HA-]i+1 = [HA-]0 - [A2-]i - [H2A]i, and so on until |[HA-]i+1 - [HA-]i| < τ.   

Eq. S1 expresses the proton concentration as a function of [HA-] and describes the pH of an 

aqueous solution of the salt MHA.  Similarly, one can derive the equations   

                                   H! ! − 2 H! H!A ! − H!A − 𝐾! + 𝐾!! H!A = 0,   (eq. S2)   

 2 H! ! A!! + (𝐾!! A!! −𝐾!!𝐾!") H! ! − 𝐾!𝐾!!𝐾!" = 0,  (eq. S3)   

for the proton concentration of aqueous solutions of the diprotic acid H2A or of the salt M2A; 

respectively.  Derivations of these equations also are given below.   

We emphasize that eqs. S1, S2, and S3 (respectively) provide the proton concentration as a 

function of the equilibrium concentration of [HA-], [H2A], or [A2-] (respectively).  In marked 

contrast, eqs. 22 and 23 provide the proton concentration at equilibrium based solely on the 

knowledge of the equilibrium constants and initial concentrations.    
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Derivation of Eq. S1 with [HA-]0 ≠ 0, [H2A]0 = 0, [A2-]0 = 0  (Parker’s eq. 5) 

In the absence of HB and its conjugate base, and for the special case where [A2-]0 = [H2A]0 = 0, 

eqs. 12 and 13 take the form  

  H! + HA! ! = OH! + HA!   + 2 A!! ,  (eq. 12a)   

  H!A + HA!   + A!! =    HA! !.        (eq. 13a)   

Replacement of [HA-]0 in eq. 12a by eq. 13a yields  

  H!A − A!! + H! − OH! = 0.     (eq. P5)  

Recall the reaction constant equation forms of Eq. 1 – 3: 

𝐾! = OH! [H!], 𝐾!! =
!!! [!!]
[!!!]

, 𝐾!" =
!!! [!!]
[!!!]

. 

Substitution of H!A = !!! [!!]
!!!

 , A!! = !!" !!!

!!
 and OH! = !!

!!
 into eq. P5 yields 

  !!! [!!]
!!!

− !!" !!!

!!
+ H! − !!

!!
= 0. 

By multiplying by 𝐻!  and rearranging the last equation is recast in this form 

  HA! + K!! H! ! = K!" HA! + 𝐾!. 

Finally solving for 𝐻! , we find that 

  H! = !!!!!" !!! !!!!!!
!!! !!!!

.    (eq. S1)  
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Derivation of Eq. S2 with [HA-]0 = 0, [H2A]0 ≠ 0, [A2-]0 = 0  

In the absence of HB and its conjugate base, and for the special case where [A2-]0 = [HA-]0 = 0, 

eqs. 12 and 13 take the form 

OH! + HA!   + 2 A!! = H! ,    (eq. 12b)   

  H!A + HA!   + A!! =    H!A !.    (eq. 13b)   

Rearranging eq. 13b and substituting this result into eq. 12b, we obtain the equation 

A!! =    H!A ! − H!A − HA! ,  

OH! − HA!   + 2( H!A ! − H!A ) = H! .   

Also from the definition of the rate constants of Eqs. 1 – 2 

OH! = !!
[!!]

,  HA! = !!! !!!
[!!]

.    

By substitution into the preceding equation, we find that  

  !!
[!!]

− !!! !!!
[!!]

  + 2( H!A ! − H!A ) = H! . 

Multiplying by H!  and rearranging yields the desired result 

  H! ! − 2 H! H!A ! − H!A − 𝐾! + 𝐾!! H!A = 0.  (eq. S2) 
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Derivation of Eq. S3 with [HA-]0 = 0, [H2A]0 = 0, [A2-]0 ≠ 0 

In the absence of HB and its conjugate base, and for the special case where [H2A]0 = [HA-]0 = 0, 

eqs. 12 and 13 take the form 

  OH! + HA!   + 2 A!!   − H! = 2 A!! !,   (eq. 12c)   

  H!A + HA!   + A!! =    A!! !.    (eq. 13c)   

Substituting eq. 13c into 12c yields 

  H! =    OH! − 2 H!A − HA!   = H! .   

Recall the reaction constant equation forms of Eq. 1 – 3 

𝐾! = OH! [H!], 𝐾!! =
!!! [!!]
[!!!]

,   𝐾!" =
!!! [!!]
[!!!]

. 

Substitution of OH! = !!
!!

,  HA! = !!! !!

!!"
, and H!A = !!! !!

!!!
 into the preceding 

equation gives us the result  

𝐾!
[H!]− 2

H! ! A!!

𝐾!!𝐾!"
−

A!! H!

𝐾!"
  = H! . 

Multiplying by 𝐾!!𝐾!"[H!] and rearranging gives the final result 

 2 H! ! A!! + (𝐾!! A!! −𝐾!!𝐾!") H! ! − 𝐾!𝐾!!𝐾!" = 0.  (eq. S3) 


