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Additivity schemes are of fundamental importance in molecular modeling. It is the goal
of an additivity scheme to predict the value of parameter for a complex system based
on the knowledge of the respective parameters for prototypical systems. The commonly
employed method is based on the identification of energy factors, the quantification of
these energy factors, and the evaluation of trial functions that depend on these fac-
tors. We describe a non-iterative method to derive energy factor expressions. While
energy factors occur in the derivation of the energy factor expressions, the values of
the energy factors are not determined and they are expressed instead as series of the
known parameters of the minimal set of prototypes. The non-iterative energy factor
analysis is illustrated by application to conformational preference energies for a series of
spiro(THF)cyclohexanes for which the results of a traditional analysis are available. We
demonstrate that the contributions to the conformational preference energy are addi-
tive, clarify the precise meaning of the terms “gauche interaction” and “1,3-interaction”,
and state a more general hypothesis that provides opportunities for testing by future
experimental and computational studies.

Keywords: Conformational analysis; additivity schemes; cyclohexane; gauche interac-
tion; 1,3-interaction.

1. Introduction

Additivity schemes are of fundamental importance in molecular modeling. It is the
goal of an additivity scheme to predict the value of a parameter for a complex system
based on the knowledge of the respective parameters for prototypical systems. Here,
we will be concerned with the parameter “preference energy” and Fig. 1 illustrates
two conceptual approaches. A set of preference energies PEn is given and the goal
is the derivation of an energy factor expression that connects the preference energy
of the complex system with “factors” derived from a minimal set of prototypical
systems. The data set in Fig. 1 contains the PEn data for all n values and this is
the desired situation to evaluate the validity of derived energy factor expressions.
Once validated in this sense, the energy factor expressions can then be considered
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Fig. 1. Schematic depiction of approaches.

to be generally valid and used to predict PEm values for still more complex systems
(m > n).

The commonly employed method for energy factor analysis of conformational
preference energies is depicted on the left in Fig. 1. An energy factor is identified,
e.g. axial versus equatorial preference energy, and it is then examined whether all
PEn can be expressed as functions of this first energy factor, F1. This is not case, of
course, and a second factor F2 is identified in the second loop, e.g. a 1,2-interaction
term such as the gauche effect. Again, the examination is made as to whether all
PEn can be expressed as functions of these two energy factors. This process contin-
ues until enough factors Fi have been identified to obtain close agreement between
the actual PEn data and the approximated PEn data determined with the energy
factor expression. The non-iterative linear method to derive energy factor expres-
sions is depicted on the right in Fig. 1. This methods starts with the identification
of all two-body interactions. Three types of interactions are considered here, they
are denoted G (1,2-gauche term), T (1,2-trans term), and E (1,3-term), and other
terms could be considered as well (e.g. transannular interactions). The energy fac-
tor expression is then written as the sum of the two-body interactions. And here is
one point in which the approaches differ in a significant way: while the loop method
assigns actual values to the factors, the non-iterative method expresses the factors
as a series of the known parameters of the minimal set of prototypes.

In the present paper, we illustrate the non-iterative energy factor analysis by
its application to derive energy factor expressions for conformational preference
energies for a series of spiro(THF)cyclohexanes (Fig. 2) for which the results
of a tradiational analysis already are available. Rablen, Paquette, and Borden
expertly discussed the conformational preferences of spiro(THF)-cyclohexanes,
1–12.1 It was one of the aims of the RPB study to explain the observation that
all-trans-1,2,3,4,5,6-hexaspiro(THF)cyclohexane, 12, prefers the all-O-equatorial
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Fig. 2. Nomenclature.

conformation,2,3 while monospiro(THF)-cyclohexane 1 prefers the O-axial con-
formation.4 RPB discussed the conformational preference energies considering three
factors, the conformational preference energy of 1, the gauche effect, and the
1,3-diaxial effect. For ease of comparison, we adopt the RPB nomenclature (Fig. 2)
and we base our analysis on their data (see Table 2).

2. Derivation of Energy Factor Expressions

In considering an additivity scheme for the calculation of the interactions among
the substituents of 12, one needs to consider all of the pair-wise interactions that
occur in 12 and then find the simplest compounds that contain everyone of those
interactions individually (if possible). Since 12 contains interactions that also exist
in 1, 2, and 3, respectively, it should be possible to explain the behavior of 12
based on the properties of 1, 2, and 3 (Fig. 3).

There are four distinct two-body interactions in 12. For the O-axial
conformation, they are 1,2-alkoxy-alkyl gauche, 1,2-alkyl-alkyl gauche, 1,2-alkoxy-
alkoxy trans, and 1,3-alkoxy-alkoxy interactions and we refer to these interactions
as Go,a, Ga,a, To,o, and Eo,o, respectively, where the subscripts “o” and “a” refer
to alkoxy and alkyl groups, respectively. For the O-equatorial conformation, they
are 1,2-alkoxy-alkyl gauche, 1,2-alkoxy-alkoxy gauche, and 1,2-alkyl-alkyl trans,
and 1,3-alkyl-alkyl interactions (Go,a, Go,o, Ta,a, and Ea,a, respectively).5,a The

aThe trans terms T account for any σ → σ∗ interactions.
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Fig. 3. Conformations (cf. Rablen et al.1).

preference energy between the two conformations can thus be calculated by the
following equation.

PE 12 = 6 × (Go,o − Ga,a) + 12 × (Go,a − Go,a)

+ 6 × (Ta,a − To,o) + 6 × (Ea,a − Eo,o). (1)

Equation (1) is an expansion of the preference energy that contains all
1,2-interactions (first three terms) and all diaxial 1,3-interactions (fourth term).
Since the number and kind of gauche alkoxy-alkyl 1,2-interactions is the same in
both conformations, the second term vanishesb and we obtain Eq. (2).

PE 12 = 6 × (Go,o − Ga,a) + 6 × (Ea,a − Eo,o) + 6 × (Ta,a − To,o). (2)

The key feature of our analysis consists in the recognition that the terms in
this equation for PE12 can be expressed as a sum over the preference energies of
compounds 2 and 3.

PE 2 = 4 × (Ea,H − Eo,H) + (Go,o − Ga,a) + 2 × (Go,a − Go,a)

+ 2 × (Go,H − Ga,H) + 2 × (Ta,H − To,H) + (Ta,a − To,o), (3)

bThis assumes that structural parameters are similar for the various isomers. If this assumption
does not hold, then the greater assumption of pair-wise additivity of course also no longer holds.
Hence, any additivity analysis relies on this assumption.
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PE 2 = 4 × (Ea,H − Eo,H) + (Go,o − Ga,a) + (Ta,a − To,o)

+ 2 × (Go,H − Ga,H) + 2 × (Ta,H − To,H), (4)

PE 3 = (Ea,a − Eo,o) + 2 × (Ea,H − Eo,H) + 4 × (Go,H − Ga,H)

+ 4 × (Ta,H − To,H). (5)

The sum of the equations for PE 2 and PE3 can be expressed as a function of PE 12

as follows,

PE 2 + PE3 = PE 12/6 + 6 × (Ea,H − Eo,H) + 6 × (Go,H − Ga,H)

+ 6 × (Ta,H − To,H) (6)

PE 2 + PE3 = PE 12/6 + 3 × PE 1,

where

PE 1 = 2 × (Ea,H − Eo,H) + 2 × (Go,H − Ga,H) + 2 × (Ta,H − To,H). (7)

Thus, we arrive at

PE12 = 6 × (PE 2 + PE3 − 3 × PE 1). (8)

Using the same approach, we also calculated the conformational preference ener-
gies of 4–11 and the derived energy factor expressions are presented in Table 1.
The results of the application of these energy factor expressions are listed in Table 2
and four columns of data are reported for every theoretical level. The data in the
column “calc.” give the conformational preference energies that are directly com-
puted based on the ab initio calculations. The numbers in columns “mod.” are the
conformational preference energies derived from our additivity model based on
the energy factor expressions of Table 1. The values in the column “diff.” denote
the difference between the model data (“mod.”) and the directly computed ab initio
values (“calc.”). Finally, the ∆ values give the deviation between our “diff.” value
and the respective value in Rablen et al.1

Table 1. Energy factor expressions.

Compd. Subst. Pattern Energy Factor Expression, PEn

1 1 PE1

2 1,2 PE2

3 1,3 PE3

4 1,4 2 PE1

5 1,2,3 2 PE2 + PE3 − 3PE1

6 1,3,5 3 PE3 − 3PE1

7 1,2,4 PE2 + PE3 − PE1

8 1,2,3,4 3 PE2 + 2PE3 − 6PE1

9 1,2,3,5 2 PE2 + 3PE3 − 6PE1

10 1,2,4,5 2 PE2 + 2PE3 − 4PE1

11 1,2,3,4,5 4 PE2 + 4PE3 − 11PE1

12 1,2,3,4,5,6 6 PE2 + 6PE3 − 18PE1
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3. Discussion

3.1. Numerical validation of the additivity approach

For most of the compounds 4–12, the non-iterative additivity model reproduces
the ab initio results very well. The deviations are less than 3 kcal/mol in most cases
and only for 6 are they greater than 4 kcal/mol. These deviations reflect structural
differences and the neglect of three- and other multi-body effects in the additivity
model.c The ∆ values allow for a direct comparison between our non-iterative model
and the model applied by RPB. Most of the ∆ values are rather small in magnitude;
generally less than 0.3 kcal/mol and less than 0.1 kcal/mol in most cases.d

With the data for PE 1,PE 2, and PE3 computed at the B3LYP/6-31G* level,
the energy factor expression leads to a value of PE12 = −20.5 kcal/mol (last
line in Table 2), and the same evaluation with the MP2/6-311+G** data yields
PE 12 = −22.3kcal/mol. Both of these values reproduce the directly computed
preference energy of PE12 = −22 kcal/mol very well.

In particular, we wish to point out that here, there is no “unexpected behav-
ior” of 12. RPB should not have placed such emphasis on the contraposition of
the facts that 12 prefers the all-O-equatorial conformation by 22 kcal/mol while 1
prefers the O-axial conformation by 0.7 kcal/mol. There is no dilemma. It is not rea-
sonable to assume that the inherent steric preference of 12 can be approximated as
6 × 0.7 = 4.2 kcal/mol because the origins of the steric repulsions in 1 and 12
are completely different: the interactions in 12 are due to 1,3-alkoxy-alkoxy repul-
sion and/or 1,3-alkyl-alkyl repulsion, respectively, while the interactions in 1 are
due to 1,3-alkoxy-hydrogen repulsion and/or 1,3-alkyl-hydrogen repulsion, respec-
tively. Only with the consideration of all the important interactions, including the
1,2- and 1,3-interactions is it possible to provide an explanation.

3.2. The precise meaning of “gauche effects” and

“1,3-diaxial interaction”

In our analysis, the definition of gauche effect is clear and straightforward. It is
(Go,o − Ga,a) and it is negative since PE 12 is negative. Therefore the absolute
value of our gauche effect is (Ga,a −Go,o). Similarly, the 1,3-diaxial effect is clearly
defined in our analysis by (Eo,o−Ea,a). These terms are related to the gauche effect
(1.8 kcal/mol) and the 1,3-diaxial interaction (2.3 kcal/mol) determined by RPB as
follows. The gauche effect defined by RPB is 2 × PE 1 − PE 2, which in the terms

cConsidering the complexity of the evaluation of three-body effects, it would not seem feasible
or economic to apply a similar additivity method to the calculation of conformational preference
energies for larger or more complicated compounds.
dThere are two exceptions in that ∆(5) computed at MP2/6-31G* is 0.8 kcal/mol and ∆(12)
computed at MP2/6-311+G** is 0.9 kcal/mol. Most likely, these differences are due to errors in
the term evaluation, rounding problems etc.
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of our analysis equals

gauche effect = 2 × PE 1 − PE2 = (Ga,a − Go,o) + 2 × (Go,H − Ga,H)

− 2 × (Ta,H − To,H) − (Ta,a − To,o). (9)

The 1,3-diaxial interaction defined by RPB is 2 × PE 1 − PE3 which can be
expressed in our terms as

1, 3-diaxial = 2 × PE 1 − PE3 = (Eo,o − Ea,a) + 2 × (Ea,H − Eo,H). (10)

These relations reveal that RPB’s gauche effect includes 1,2-alkoxy-hydrogen
and 1,2-alkyl-hydrogen-gauche interactions as well as 1,2-trans interactions (Ta,H −
To,H) and (Ta,H − To,H). Furthermore, it can be seen that the RPB definition
of the 1,3-diaxial interaction (Ea,a − Eo,o)e also includes 1,3-alkyl-hydrogen and
1,3-alkoxy-hydrogen interactions.

RPB’s PE12 is a sum of six gauche and six 1,3-diaxial interactions

PE12 = 6 × gauche effect + 6 × 1, 3-diaxial effect, (11)

and the comparison with Eq. (2) results in the condition:

0 = 6 × [2 × (Go,H − Ga,H) − 2 × (Ta,H − To,H) − (Ta,a − To,o)]

+ 6 × [2 × (Ea,H − Eo,H)] − 6 × (Ta,a − To,o)

0 = (Go,H − Ga,H) − (Ta,H − To,H) − (Ta,a − To,o) + (Ea,H − Eo,H).

For the RPB approach to work, this condition has to hold. RPB neglect the
T terms altogether and rely on the condition 0 = (Go,H − Ga,H) + (Ea,H − Eo,H).
One can hope for cancellation but there is no reason why there should be a strict
cancellation. More realistically, one might assume that this condition holds approx-
imately because (Go,H − Ga,H), (Ea,H − Eo,H), (Ta,H − To,H), and (Ta,a − To,o)
presumably all are small. We pointed out above that most ∆ values are rather small
and that finding suggests that indeed this approximation works well in most cases.
In our method, there is no need to attach values to any of the pair-wise interactions
because the formalism does not rely on the evaluation of a test function (Fig. 1).

4. Conclusion

It is a direct conclusion of our discussion that the conformational preference
energy of 12 is the result of the transferability and additivity of the 1,2- and the
1,3-interactions. These interactions cause all of the conformational preference ener-
gies of 1, 2, 3, and 12. Our analysis clearly demonstrates that the 22 kcal/mol
energy preference of the O-equatorial conformation of 12 over the O-axial con-
formation can be explained by consideration of the concept of the gauche effect
and the concept of 1,3-diaxial interactions. The essence of the present work is a

eNote that the absolute value of Ea,a − Eo,o is Eo,o − Ea,a and since RPB makes all the values
positive, one can consider our definition of 1,3-diaxial interaction to be Eo,o − Ea,a.
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more concise grasp of the concepts “gauche effect” and “1,3-diaxial interaction”.
We defined all the interaction terms clearly, strict, and exclusive so that they do
not contain multiple interactions which are neither obvious nor intuitive.

We presented a more systematic and conceptually clear approach to analyze
conformational effects of 4–12. This approach is compound-independent and the
analysis of the spiro(THF)cyclohexanes leads to a more generalized hypothesis:
the conformational preference energy of multi-substituted cyclohexanes is additive
in terms of the conformational preference energy of less substituted compounds,
which contain all the possible interactions existing in the multi-substituted cyclo-
hexane in question. Certainly it is impossible to exhaust all the multi-substituted
cyclohexanes. But it is obviously true that all the possible interactions in any multi-
substituted cyclohexane exist in less substituted cyclohexanes simply because we
can keep just the two groups involved in an interaction and leave off any other
substituents. The only exceptions are the bi-substituted cyclohexanes since mono-
substituted cyclohexanes do not contain any 1,2-, 1,3-, or 1,4-interactions between
two substituents. This hypothesis is open for testing by future experimental and
computational studies.
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