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Many problems in modern chemistry involve
the computation of electrostatic interactions
between large numbers of distant atoms and
molecules.  Due to the O(N2) nature of the N-
body problem, the computational requirements
quickly become overwhelming.  Numerical
techniques designed to deal with large N
generally compute some kind of “average” for
the particles in groups A and B.  These
“averages” are then used to estimate the
potential between distributions A and B.  One
method that has been successful is the Fast
Multipole Method (FMM).  The basic form of
the FMM formula is given in equation 1.
Equation 1 leads naturally to the question:
does there exist an expression for the potential
of the form shown in equation 2-1?

Qj = (ρj, αj, βj)

Pk = (rk, θk, φk)
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Since chemistry deals with continuous charge distributions a more appropriate form might be
equation 2-2.  Equation 2 offers the advantage that the summations over A and B are independent
of each other.  This property should allow for a more efficient implementation of a fast multipole
algorithm.  In this presentation, the mathematical derivation will be presented for a fast multipole
algorithm that takes the desired form of equation 2-2.  


