MATHEMATICAL DERIVATION OF

AN ALTERNATIVE FAST MULTIPOLE METHOD.

Don Steiger, ${ }^{\text {a Calvin Ahlbrandt*a and Rainer Glaser*b }}$
Departments of Mathematics (a) and Chemistry (b)
University of Missouri-Columbia, Columbia, MO 65211.

Many problems in modern chemistry involve the computation of electrostatic interactions between large numbers of distant atoms and molecules. Due to the $\mathrm{O}\left(\mathrm{N}^{2}\right)$ nature of the N body problem, the computational requirements quickly become overwhelming. Numerical techniques designed to deal with large N generally compute some kind of "average" for the particles in groups A and B. These "averages" are then used to estimate the potential between distributions A and B. One method that has been successful is the Fast Multipole Method (FMM). The basic form of the FMM formula is given in equation 1. Equation 1 leads naturally to the question:
 of the form shown in equation 2-1?

$$
\begin{array}{ll}
\sum_{m=0}^{\infty} \sum_{B}\left(B_{m}\left(P_{k}\right) \sum_{A} A_{m}\left(Q_{j}\right)\right) \\
\sum_{m=0}^{\infty}\left(\sum_{B} B_{m}\left(P_{k}\right)\right)\left(\sum_{A} A_{m}\left(Q_{j}\right)\right) & \text { (equation 1) } \\
\sum_{m=0}^{\infty}\left(\int_{B} B_{m}\left(P_{k}\right)\right)\left(\int_{A} A_{m}\left(Q_{j}\right)\right) & \text { (equation 2-1 } \tag{equation2-2}
\end{array}
$$

Since chemistry deals with continuous charge distributions a more appropriate form might be equation 2-2. Equation 2 offers the advantage that the summations over A and B are independent of each other. This property should allow for a more efficient implementation of a fast multipole algorithm. In this presentation, the mathematical derivation will be presented for a fast multipole algorithm that takes the desired form of equation 2-2.

