Phosphorus Sulphur and Silicon Vols. 136, 137 & 138 pp. 287–290 Reprints available directly from the publisher Photocopying permitted by license only

SELENO- AND TELLUROCARBENIUM IONS

HANSJÖRG GRÜTZMACHER^a, GRACE SHIAHUY CHEN^a, DIETMAR OHLMANN^a, CHRISTINA M. MARCHAND, RAINER GLASER^b

^aETH-Zentrum, Universitätsstrasse 6, CH-8092 Zürich, email:gruetz@inorg.chem.ethz.ch; ^bUniversity of Missouri-Columbia, Department of Chemistry, 209 Chemistry Building, Columbia, Missouri 65211

Abstract: α -Chalcogeno substituted carbenium salts $[(RX)_3C]^+ PF_6^-$ (X = S, Se, Te; R = 2,4,6-*i*Pr₃C₆H₂) obtained from reaction of the copper complexes [(bipy)CuXR] with CBr₄ are stabilized to the same extent; but the electronic mechanism is very different.

<u>Keywords:</u> Carbenium Ions; Tellurium; Selenium; Stability; Ab initio calculations; Structures

INTRODUCTION

Stabilizing effects of chalcogeno centers are controversially discussed^[1]. The notion, that heteroatoms from the higher periods are poorer π -donors than their lighter congeners was repeatedly criticized^[2,3]. The influence of multiple substitution (n > 1) on the stability of ions [(HX)_nCH_{3-n}]⁺ (X = O, S, Se; n = 1-3) is little investigated^[4].

288 H. GRÜTZMACHER, G. S. CHEN, D. OHLMANN, CH. M. MARCHAND, R. GLASER

EXPERIMENTAL AND QUANTUM CHEMICAL RESULTS

We studied systematically chalcogeno carbenium ions $[(RX)_3C]^+$ as $CuBr_2^-(3a-c)$ or $PF_6^-(5a-c)$ salts and their corresponding methanes $(RX)_3CH$ (X = S, Se, Te) (8a-c) (Scheme 1)^[5].

SCHEME 1

Some selected physical data are given in Table I. The relative C-X bond shortening Δ in the ions, when compared to the methanes, slightly decreases S = Se > Te.

TIDED I. Beleded physical data for ou e and ou e						
	CX _{exp} /CX _{cal}	Δ	δ ¹³ C	δ ⁷⁷ Se/ ¹²⁵ Te	λ _{max}	
	[Å]	[%]			[nm]	
3a X=S	1.706 / 1.710	6.5	239.5		309	
3b X= Se	1.839 / 1.860	6.5	253.7	770	388	
3c X=Te	2.060 / 2.056	4.7	230.6	/ 1279	500	
8a X=S	1.817 / <i>1.821</i>		73.06		275	
8b X=Se	1.960 / <i>1.973</i>		39.77	280	300	
8c X=Te	2.156 / <i>2.169</i>		-64.24	/ 562	379	

TABLE I. Selected physical data for 3a-c and 8a-c

Hydride transfer energies (HTE) and bond seperation energies (BSE) were calculated according to (1) and (2), respectively.

 $[(HX)_{n}CH_{3-n}]^{+} + CH_{4} \rightarrow (HX)_{n}CH_{4-n} + [CH_{3}]^{+} (1)$

 $[(HX)_nCH_{3-n}]^+ + n CH_4 \rightarrow n (HX)CH_3 + [CH_3]^+ (2)$ In Table II, total charges on carbon (NBA; MP2/LANL1DZ+P') are listed. Multiple substitution increasingly stabilizes <u>all carbenium ions</u> $[(HX)_nCH_{3-n}]^+$ to the same extent (see HTE's).

TABLE II	TABLE II NBA total charges on carbon in [(HX) _n CH _{3-n}] ⁺					
n	1	2	3			
X = O	0.476	0.823	1.212			
X = S	-0.326	-0.493	-0.553			
X = Se	-0.446	-0.700	-0.853			
X = Te	-0.666	-1.065	-1.339			

FIGURE 1 Presentation of the HTE's (left) and BSE's (right) of carbenium ions $[(HX)_nCH_{3-n}]^+$ (X = O, S, Se, Te; n = 1-3)

290 H. GRÜTZMACHER, G. S. CHEN, D. OHLMANN, CH. M. MARCHAND, R. GLASER

The electronic mechanism causing this phenomena is very different for X = O versus X = S, Se, Te. Instead of charge dispersal, an increased charge separation is seen in $[(HO)_nCH_{3-n}]^+$ leading to increasingly polar and increasingly stronger $C^{\delta+}$ -O^{$\delta-$} bonds (manifested by the strong increase of BSE with increasing n). On the contrary, the heavier homologues are indeed stabilized by increasing $\sigma+\pi$ donation from the α -heteroatom to the carbenium center which leads to negatively charged carbon centers. Clearly, these heteroelements are the better π -donors. Note also that the most positively charged carbon nucleus in $[(HO)_3C]^+$ shows the lowest frequency shifted ¹³C carbon resonance.

Acknowledgements

We thank the Swiss National Science Foundation and the NATO (CRG 940399) for financial support.

References

- [1.] Review: H. Grützmacher, Ch.M. Marchand, Coord. Chem. Rev., 163, 287 (1997).
- [2.] G. Frenking, S. Fau, Ch. M. Marchand, H. Grützmacher, J. Am. Chem. Soc., 119, 6648 (1997).
- [3.] J. Kapp, C. Schade, A. M. El-Nahas, and P. v. R. Schleyer, *Angew. Chem.*, 108 (1996) 2373.
- [4.] K. Ösapay, J. Delhalle, K. M. Nsunda, E. Rolli, R. Houriet, and L. Hevesi, J. Am. Chem. Soc., 111 (1989) 5028.
- [5.] H. Grützmacher, D. Ohlmann, C. M. Marchand, G. S. Chen, D. Farmer, R. Glaser, A. Currao, R. Nesper, and H. Pritzkow, *Angew. Chem. Int. Ed. Engl.*, 35 (1996) 300.