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Abstract

Atomic properties are central to discussions of bonding and reactivity, and topological electron
density analysis provides a powerful framework for their rigorous determination. Whereas the
topological method can be applied routinely to comparatively small molecules, its application to
large molecules is somewhat impeded by the rather considerable amounts of computer time re-
quired. Here, we describe two new methods for the determination of integrated atomic properties
that greatly reduce the integration times while maintaining the generality, the rigor, and the
accuracy of the topological partitioning method. The principle of the methods consists in reducing
the total molecular electron density function to atom-specific electron density functions that ac-
curately describe the electron density distribution in the basin of the atom whose properties are
being determined. It is shown that this task can be accomplished either by a reduction of the space
of the primitives in which the wave function is expanded or via electron density functions defined
by atom-specific subsets of selected localized molecular orbitals. With the current integration
algorithm the latter method is more efficient. The two methods can be combined. The theoretical
principles and the computational implementation of the methods are discussed. Their perform-
ances have been tested for a series of polyines C,,H, and polynitriles C,N,H, ., (n=1-5 and 10)
and the topological characteristics and the integrated properties are found to be in excellent agree-
ment with results obtained by the conventional technique. Importantly, it is shown that with the
subset selection, integration time requirements approach an upper limit as the size of the molecule
increases. The methods perform equally well for all kinds of basis sets, allowing for the analysis of
large molecules described by spliced basis sets. The rigorous electron density analysis of very large
molecular systems becomes feasible.
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INTRODUCTION

Atomic properties are central to discussions of bonding and of intra- and
intermolecular interactions, to explain the reactivity of molecules, and to dis-
cuss reaction mechanisms. For a recent discussion of various population anal-
ysis methods see ref. 1. Basis set partitioning and electron density integration
techniques have emerged as the two fundamentally different approaches to
deriving atomic properties. Among the population analyses based on basis set
partitioning are the Mulliken population analysis [2], the SEN method [3],
and the natural population method [4], to name a few. Density integration
techniques differ fundamentally from the basis set partitioning methods, in
that they consider only the (experimentally observable) electron density.
Problems arising in the basis set partitioning techniques related to the assign-
ment of density to the basis function centers do not occur. The problem of
partitioning the electron density between the nuclei remains, and different
methods have been proposed to resolve it [5-7]. For planar molecules inte-
grated populations derived from electron density projection functions approx-
imate the Bader populations in an efficient way. Bader’s theory of atoms in
molecules defines the most rigorous partitioning scheme based exclusively on
the topology of the electron density distribution [8,9].

The topological method has two major advantages compared to all other
methods. First, it is the only method in which the partitioning of the molecular
system into atomic regions is done in a rigorous way that is based on the axioms
of quantum mechanics [8]. All other methods involve further assumptions.
Secondly, the topological method allows for the determination of a variety of
atomic properties. With the atomic region in the molecule defined, the charge,
for example, can be derived by numerical integration of the electron density
within that space. Other interesting properties that can be derived include the
atomic moments, the atomic kinetic energy and some thirty other properties.
The one limiting disadvantage of the topological method relates to its extreme
requirement of computer time. The time required for the determination of the
integrated atomic properties of a molecules greatly exceeds the time required
for the determination of the wave function. The determination of these inte-
grated atomic properties essentially involves three steps {10]. We thank Pro-
fessor Bader for the programs EXTREME and PROAIM. EXTREME and PROAIM
were ported to the Silicon Graphics Personal Iris by R. Glaser. In the first step,
the critical points—the extrema—of the electron density distribution are lo-
cated and their characteristic values—the so-called topological properties in-
cluding p value, gradient, curvatures, and similar properties — are determined.
This step is fast, even for very large molecular systems. For a report on the
determination of molecular graphs and topological properties of rather large
systems, see, for example, ref. 11. Next, the partitioning surfaces are deter-
mined by tracing the paths of steepest descent in the electron density distri-
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13.6 Angstroms

{ 26.5 Angstroms }2

Length of repeating unit about 2.6 Angstroms
Number of electrons NE = 12n+2

Fig. 1. Molecular models of the optimized structures of the polyines H-(CC),-H (n=1-5 and 10)
examined.

bution. The surface definitions start at the bond critical points and in a variety
of directions perpendicular to the bond paths. With the partitioning surfaces
determined, the integrated atomic properties can then be determined by nu-
merical integration within the atomic regions, the basins. This integration is
the most computer time intensive step. Even for a molecule of moderate size,
the time required for the determination of the integrated atomic properties of
each atom is of the same order as the time required for the geometry optimi-
zation of the molecule. It is this feature that limits the application of this pow-
erful method to comparatively small molecules, and essentially prohibits the
electron density analysis of large systems. In ab initio quantum chemistry,
even a molecule with as few as ten non-hydrogen atoms has to be considered
as “large” and it becomes thus quite obvious that the time limitation is indeed
a serious disadvantage, especially with a view toward applications in QSARs.
In this article we present two new methods that allow for an efficient deter-
mination of integrated atomic properties. With these methods, the integration
times required for the determination of integrated atomic properties can be
drastically reduced, while maintaining the generality, the rigor, and the accu-
racy of the topological method. The principles of these methods consist in re-
ducing the total molecular electron density function to atom specific functions
that accurately describe the electron density distribution in the basin of the



Length of repeating unit about 2.3 Angstroms
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Fig. 2 (opposite and above ), The optimized structures of the planar all-E polynitriles H- (HCN) .-
H (n= 1—5, and 10).

atom whose properties are being determined. The theoretical principles and
the computational implementation are discussed. With these methods, not only
will the analysis of the electronic structures, the atomic properties and the
reactivities of large molecules be greatly facilitated but, moreover, it will also
be significant in examining and judging important concepts in molecular mod-
eling. Quantitative structure-activity relationships of natural products, bio-
logically and/or pharmaceutically important molecules, and the properties of
polymers are usually approached with molecular mechanics or with semi-em-
pirical procedures, but rarely at the ab initio level. It is hoped that efficient
density integration techniques will make it possible to derive rigorous atomic
properties of large molecules at the ab initio level and, in so doing, will make
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Fig. 2.

it possible to evaluate and refine the capabilities of modern molecular modeling
techniques.

A series of polyines H-(CC),-H and a series of N-substituted polyacetyl-
enes, the polynitriles H-(HCN),-H, were examined to test the new methods.
In this article we restrict the discussion of these systems exclusively to the
methodological aspects. The largest molecules in these series have in excess of
120 electrons and are longer than 23 A. All of these polymers were optimized
at the restricted Hartree-Fock (RHF) level with the minimal basis set STO-
3G [12]. The resulting structures are shown in Figs. 1 and 2 and structural
parameters are documented in Tables 1 and 2. This theoretical level was cho-
sen with a view toward studies of rather large systems and, moreover, this level
is perfectly adequate for systematically testing the procedure, with the least
investment of computer time. A few systems were also examined with larger,
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TABLE 1

Bond lengths (in A) of polyines®

Parameter C.H, C,H, CeH, CsH, CioH, CooH,
C1-C2 1.1684 1.4083 1.1816 1.3979 1.1839 1.3956
C1-C3 1.1746 1.4034 1.1827 1.3968 1.1846
C3-Cs 1.7156 1.4027 1.1829 1.3956
C5-C7 1.1758 1.4028 1.1845
C7-C9 1.1759 1.39569
C9-C11 1.1843
Ci1-C13 1.3968
C13-C15 1.1831
C15-C17 1.4025
C17-C19 1.1760
C-H 1.0654 1.0660 1.0665 1.0667 1.0666 1.0669

*All structures optimized with D ;, symmetry with the minimal basis set.

split-valence and polarized basis sets [13], including the basis sets [14-16] 3-
21G [14] and 3-21G*, 6-31G [15] and 6-31G*, and 6-311G [16] and 6-311G™.
Sets of six Cartesian single d functions with exponent 0.8 were added to all
first row atoms in the non-standard 3-21G* basis set. The success of the meth-
ods greatly depends on the accuracy of the partitioning surfaces in the bonding
regions. The selected polymers present excellent test cases in this regard be-
cause they include single, double, and triple bonds in addition to polar and
unpolar bonds. The polyines are of particular value because of very subtle fea-
tures in the bonding regions of the triple bonds. It is known that the electron
density distribution in triple bonds are rather flat [17,18] and, in some cases,
such bonds exhibit small maxima in the electron density in the bonding re-
gions. Such non-nuclear attractors have also been found in other systems [19].
We report the topological properties of the critical points and a small selection
of integrated atomic properties, to demonstrate the quality of the results ob-
tained with the new methods. The topological parameters selected include the
distances of the bond critical points from the adjacent atoms, and the values
of the electron density and of the principal curvatures of the electron density
at the location of the bond critical point. The three integrated properties dis-
cussed throughout are the atom populations, the atomic dipole moment, and
the atomic kinetic energy. Because of their definitions, these properties exhibit
different dependencies on the accuracy of the partitioning method and they
thus provide excellent parameters for the present task. Moreover, these quan-
tities were selected because we find them the most useful integrated properties
in our studies [20-23 ] of deamination reactions and their role in the alkylation
chemistry of biopolymers.



TABLE 2

Structures of N-substituted polyacetylenes: the polynitriles H-(HCN),-H*

ol

Parameter n=1 n=2 n=3 n=4 n=>5 n=20°
Bond length

C1-N2 1.2727 1.2765 1.2777 1.2781 1.2782 1.2784
N2-C3 1.4644 1.4598 1.4588 1.45856 1.4582
C3-N4 1.2752 1.2798 1.2813 1.2817 1.2821
N4-C5 1.4603 1.4549 1.4537 1.4530
C5-N6 1.2762 1.2806 1.2822 1.2830
N6-C7 1.4601 1.4545 1.4525
C7-N8 1.2760 1.2807 1.2830
N8-C9 1.4601 1.4526
C9-N10 1.2760 1.2830
He-C1 1.0888 1.0917 1.0883 1.0883 1.0883 1.2830
H4-C1 1.0907 1.0881 1.0919 1.0919 1.0920 1.0884
H-C3 1.0966 1.0976 1.0977 1.0977 1.0920
H-C5 1.0964 1.0973 1.0974 1.0979
H-C7 1.0963 1.0972 1.0976
H-C9 1.0963 1.0974
He-N 1.0483 1.0475 1.0478 1.0479 1.0479 1.0479
Bond angles

C1-N2-C3 114.299 114.300 114.2'74 114.264 114.257

N2-C3-N4 118.770 119.041 118.955 118.945 118.911

C3-N4-C5 114.208 114.170 114.156 114.147

N4-C5-N6 118.648 118.944 118.892 118.858

C5-N6-C7 114.179 114.157 114.128
N6-C7-N8 118.654 118.910 118.796
C7-N8-C9 114.199 114.138
N8-C9-N10 118.629 118.811
He-C1-N2 119.118 119.217 119.083 119.070 119.059 119.058
H4-C1-N2 125.396 124.725 124.690 124.694 124.694 124.706
H-C3-N2 116.243 116.900 116.967 117.003 117.042
H-C5-N4 116.444 117.038 117.141 117.223
H-C7-N6 116.490 117,057 117.218
H-C9-N8 116.493 117.241
H*-N-C 109.102 108.536 108.507 108.524 108.540 108.549

®All structures optimized in C, symmetry. Bond lengths in A and angles in Deg.

bSee Appendix for a complete set of structural parameters.

°H trans with N3.
9H cis with N3.

*The terminal imine hydrogen atom.

BASIC PRINCIPLES

The molecular electron density function in real Cartesian space, p(x,y,2), is
the product of the wave function and its complex conjugate. If the wave func-
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tion of the system is given by the self-consistent set of real molecular orbitals
¥, the electron density distribution is defined as

Prot (X,y,2) =22, ¥;'¥;

The factor of 2 accounts for double occupancy and the summation is over the
occupied orbitals only. Here we are discussing RHF wave function only, but
the methods are also all applicable to cases with orbital occupancies other than
2. The molecular orbitals (MOs) ¥, are expressed as linear combinations of
Slater-type, atom-centered atomic orbitals. Each atomic orbital is usually de-
scribed by several basis functions, with the appropriate second quantum num-
ber and with the appropriate exponent, and the atomic orbitals themselves are
(fixed) contractions of primitive functions ¢,. The MOs can thus be expressed
as either a linear combination of the basis functions ¢, with coefficients c’,; or
asa

¥i=>c0, (basis function expansion )
¥

¥.=>c,d, (primitive function expansion)
v

linear combination of the primitive functions where the c,; result from the
combination of the coefficients ¢/,; and the contraction coefficients. This yields
for the molecular electron density function as expressed in the primitives

pmol (x,y,Z) = z ZP,uv¢,u¢P

where P, is the one-electron density matrix

P;w = 2Zcm’cvi
i

The determination of the atomic properties by the density integration tech-
nique requires this function to be evaluated for small volume elements within
the atomic basins. The time required for the evaluation of g, (x,y,z) will in-
crease with the size of the molecule for three reasons: (a) The number of MOs
increases, (b) the number of basis functions increases, and (c¢) the number of
primitives increases. For the determination of the wave function, the number
of MOs cannot be reduced, of course, and the number of basis functions and
the associated number of primitives should definitely not be reduced to guar-
antee the determination of properties of excellent quality. However, after the
wave function is determined, the integration problem can be reduced in two
ways. This equation for p, (x,y,2) suggests two methods for a more efficient
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numerical integration within the basin of a given atom. For the determination
of the properties of a specific atom, all that is required is an electron density
function that is the same as p,,,,, within the basin of that atom, but this function
might differ outside the basin without consequences for the accuracy of the
computed atomic properties. These two methods consist in the reduction of
the numbers of primitives considered (» reduction) and in the reduction of the
number of MOs considered (i reduction).

SELECTION AND REDUCTION OF PRIMITIVE FUNCTIONS
Theoretical principles

In the expression for the molecular electron density function p,, (x,y,z) the
index v denotes one primitive function among all of the primitive functions,
without regard to the location at

pmol(xsy,z) =22 [chi¢v]2

which the function is centered. Instead of indexing all the primitive functions
in this way, we may collect the primitives that are centered at a given nucleus
N into N sets and use & to index the primitives within each of these sets to
define the functions ¥;5. The summation of all ¥y, yields of course the molec-
ular orbital ¥,. The index & depends on the atom type and the basis set selected
for atom N.

lPi = chi¢v
¥Yin= ;cNki¢Nk (E=f(N))
‘Pi = Z "P;‘N

N

We thus obtain for the molecular electron density function

Pmar (%,Y,2) =22 [;{;cNki¢Nk} ]?

The primitive functions decrease with the distance from the atom at which
they are centered. If the atom M is far away from atom K, then the electron
density of atom K will not affect the electron density function at the location
of atom M. For the correct description of the electron density distribution in
the basin of atom M, the contributions made by the primitives of atom K are
negligible. Thus, the determination of the atomic properties of an atom M may

be carried out with an atom-specific electron density function py; (x,y,2) de-
fined by
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P (x:,2) =23 [ DD enni®an }]? where Ne{K close to M}
i N &k

that contains only the contributions to the electron density distribution of the
atoms in the proximity of atom M. Electron density distributions of atoms in
the proximity of atom M can be described by the set of all MOs containing
only primitive coefficients for atoms in the proximity of atom M. The atoms
that need to be considered for the evaluation of this function depend on the
exponents of the primitive functions and on the distances between these atoms
and atom M. For the types of extended systems considered here, the selection
of these atoms can be done simply based on connectivity. More generally, this
selection is accomplished by a criterion based on internuclear distances. Based
on connectivity, we can easily determine the next neighbors of atom M and the
second-next neighbors of M (the neighbors of the next neighbors ) and so forth.
We refer to the subset of atoms {K close to M} that contains all of the neighbors
including the nth-next neighbors as NNN =n. The choice of NNN will of course
affect the atom specific electron density function pj; and we thus write

Pu(xy,2,NNN) =23 [ Y (D cnnitnn }]? where Ne {K close to M}
TN E

Performance of the method

The use of this equation for the determination of integrated atomic proper-
ties has been examined for the polyines and the results obtained for C,,H,, are
discussed as an illustrative example. The atom-specific electron density func-
tions py (x,y,2,0) have been determined and the functions py,; (0,0,2,0) are de-
picted graphically in Fig. 3. The molecule is aligned with the 2z axis and the
inversion center is located at the origin. A logarithmic scale is used to empha-
size the tails of the functions p). In the specific case considered here, it is
found that the functions pj become less than 107* ¢ a.u.~® as the distance
from the nucleus M becomes greater than 4 A. In general, the fall-off of these
functions will depend on the basis set and on the molecular system. Molecules
that require diffuse functions for their proper description will lead to such
functions py that extend further away from the nuclei M.

If all of the primitives of the atoms K that are within 4 A of atom M are
considered in the computation of the atom specific electron density function
pm(x,y,2,NNN), then the determination of the integrated atomic properties
of atom M should be rather exact. The functions p¢g (0,0,2, NNN) shown in
Fig. 4 were determined with NNN values of 1 (dotted), 2 (short dashes), and
3 (long dashes). The molecular electron density function is superimposed as a
solid line. The largest deviations between p,,; and pj, are expected to occur in
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Fig. 4. Top, the molecular electron density function g, of C,;H, shown together with the corre-
sponding electron density functions pc ( NNN) that result from the expansion of the wave func-
tion in the primitives of atoms H-C9-C7 (NNN =1, dotted), H-C9-C7-C5 (NNN=2, short
dashes), and H-C9-C7-C5 (NNN =3, long dashes) only. Bottom, the region —0.6<logp< —0.4
shown in an expanded fashion. Small deviations between the electron density functions expanded
in all primitives or subsets of primitives become apparent in the bonding regions. The occurrence
of non-nuclear attractors in the triple bonds is also clearly shown.
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TABLE 3

Elimination of primitive functions: topological properties of C9 in C,,H, polyine

Entry No.® A-B Bond P rg’ pe A=A A3
1° C9-C7 0.4468 0.7291 0.3602 —0.2976 0.4901
0.6054 0.5705 0.3641 —0.2896 -0.1381
0.7253 0.4506 0.3621 —0.2834 0.3863
H11-C9 0.4210 0.6456 0.2640 -0.5906 0.4636
of C9-C7 0.4468 0.7291 0.3602 —-0.2976 0.4899
0.60563 0.5706 0.3640 —0.2896 —-0.1382
0.7253 0.4505 0.3621 —0.2833 0.3870
H11-C9 0.4210 0.6456 0.2640 —0.5906 0.4636
108 Co-C7 0.4426 0.7334 0.3623 —0.3056 0.5629
0.6390 0.5369 0.3680 —-0.2979 —0.0925
0.7002 0.4757 0.3677 —-0.2970 0.1570
H11-C9 0.4210 0.6456 0.2640 —0.5906 0.4635

*“Entry numbers correspond to those in Table 4 (for an explanation of entry Nos. see text). For
the C9-C7 bond, the three critical points characterized are the bond critical point near C9, the
non-nuclear attractor in the C9-C7 bonding region, and the bond critical point near C7, in this
order.

bDistances (in A) of the critical points from atoms A and B.

PElectron density at the critical point (in e a.u.~%).

dCurvatures in the density perpendicular (4, and A,) and parallel (4;) to the molecular axis {in
a.u.).

“Total electron density.

fConsidering the primitive functions of fragment H-C9-C7-C5 only.

¢Considering the primitive functions of fragment H-C9-C7 only.

the bonding regions and the plot shown at the bottom of Fig. 4 emphasizes the
dependence of pj; on NNN in those regions. Note that the non-nuclear at-
tractors in the triple bond regions are clearly manifested. Considering only the
next neighbors for the calculation of pie reproduces the total electron density
function in the C—H bonding region excellently, but small deviations do occur
in the C9-C7 bonding region. With the selection of NNN =2, a function p¢, is
obtained that perfectly matches the total electron density function of the mol-
ecule; further increase of NNN has no effect.

The characteristic values of the critical points in the C9-H and C9-C7 bond-
ing regions allow for a more quantitative comparison of the functions p,,, and
peo. In Table 3, the topological properties for these bonding regions are pre-
sented. Each critical point is characterized by its distance from the adjacent
attractors A (r,) and B (rg), by the value of the electron density at that point,
and by the principal curvatures of the electron density perpendicular (1,=4,)
and parallel (1;) to the bond path. The C9-C7 bonding region contains two
bond critical points and one non-nuclear attractor and the characteristic val-
ues of all these critical points are given in Table 3. The integrated atomic pop-
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TABLE 4

Elimination of primitive functions: integration results for C9 in C,,H, polyine

Entry No. Eliminated IpP® u,° T4 t°
primitives®

1 None 5.375 0.745 36.984703 3.50
1 None' 5.375 0.745 36.984702 3.49
2 H12 5.375 0.745 36.984701 3.49
3 C10-12 5.375 0.745 36.984702 3.47
4 C8-12 5.375 0.745 36.984702 3.43
5 C6-12 5.375 0.745 36.984702 3.43
6 C4-12 5.375 0.745 36.984701 3.44
7 C2-12 5.375 0.745 36.984702 3.43
8 C1-12 5.375 0.745 36.984702 3.37
9 C3-12 5.376 0.7456 36.984754 3.23

10 C5-12 5.352 0.764 36.968049 2.87

*Integrations are for atom C9, using all of the MOs after elimination of all of the primitives of the
atoms shown in column 2 (see Fig. 1 for atom numbering).

"Integrated populations (in e.).

“Integrated dipole moment (in e a.u.—%).

Integrated kinetic energies in (a.u.), C,oH,;, E(RHF/ST0-3G) = —374.819358 a.u. with —
V/T=2.00664975. The kinetic energies are corrected for the virial defect of the wave function.
*Time taken for integration (in h.).

*Values determined using all of the localized orbitals.

ulations, dipole moments, and kinetic energies of C9, derived with these func-
tions p ¢y, are given in Table 4, together with the definition of the entry number.
The results given for entry 1 are those determined with the molecular electron
density function, and as the Entry No. increases, the more sets of primitives
are eliminated, beginning with the elimination of the primitive functions cen-
tered at H12. Entry No. 10 thus refers to p¢e with NNN=1 and Entry No. 9
to pcy with NNN=2 and so on. Table 4 and Fig. 5 show that the integrated
properties are exactly reproduced for all entries 1-8. The same is true for the
topological properties of these entries. For Entry 9 (NNN =2) the population
and the dipole moment are reproduced virtually exact, whereas the kinetic
energy is slightly (0.033 kcal mol~') too high. More significant differences
occur as expected, if only the next neighbors are considered. The bond critical
point in the proximity of C9 occurs closer to C9 and the populations and kinetic
energy of C9 are consequently underestimated. Note that log[pte (NNN)] is
larger than log[p.,.;] in the bonding regions because increasing NNN will add
“tails” of electron density, for which log[p] <O0.

These results clearly demonstrate that numerically exact integrated atomic
properties can be derived from the atom specific electron density functions
Pco (NNN) so long as NNN is sufficiently high (here NNN>2). Even with
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NNN =2, populations and dipole moments can be reproduced in an excellent
fashion. The time requirements for the integrations of the C9 basins with the
functions pcg (NNN) are given in Table 4 and they are shown graphically in
Fig. 6. It is found that the primitive elimination method leads to only relatively
modest savings of computation time with the current integration program. We
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point out that this method of selecting and reducing the number of primitives
considered in the integration has the potential of greatly speeding up the de-
termination of atomic properties if the appropriate changes are made to the
integration program. Preliminary results support this conclusion [24].

SELECTION OF SUBSETS OF LOCALIZED MOLECULAR ORBITALS
Theoretical principles

The self-consistent molecular orbitals are the result of linear combination
of atomic orbitals (LCAQO) and this LCAO procedure yields a set of delocalized
orthogonal MOs. It is important to note that these MOs are delocalized, that
is they involve contributions from many or all atoms of the molecule. In Fig.
7, a contour plot of a delocalized o-type orbital of butadiine is shown. It is
obvious that this orbital contributes electron density to each atom; therefore
this orbital needs to be considered for the determination of the atomic prop-
erties of each atom in the molecule. The same situation occurs with all other
delocalized MOs.

With a suitable unitary transformation of the delocalized MOs it is possible
to obtain localized MOs (LMOs) without any overall change of the electron
density distribution of the molecule. In Fig. 8, a contour plot is shown of one

Fig. 8. Contour plot of a localized molecular orbital of butadiine.
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of the resulting LMOs. It is clear simply by inspection that this LMO contrib-
utes electron density to only a few atoms in the molecule.

Thus: With an algorithm for the selection of the subset of LMOs that suf-
fices to fully describe the electron density distribution in the proximity of a
given atom, the determination of atomic properties could be made highly
efficient.

Suppose the localization was performed. The molecular electron density is
given by

pmol(xyy’z) = 22 [chi¢v]2

where the coefficients c,; are now those of the LMOs. We are interested in
finding an electron density function py; that describes the electron density
distribution in the basin of atom M in a simpler fashion than the function p,,;
does. The molecular orbitals are now localized, so it is clear that there will be
many LMOs that contribute essentially nothing to the molecular electron den-
sity function g, in the basin of atom M. If these LMOs could be identified,
they could be omitted in the determination of the integrated properties of atom
M. To accomplish this task, we first determine the atom-specific LMOs. The
set of atom-specific LMOs of atom M contains all of the LMOs which do have
significant contributions from the basis functions centered at atom M. These
sets have been determined with a selection algorithm that examines the coef-
- ficients of the LMOs as described below. The determination of the sets of atom-
specific LMOs is made for all of the atoms in the molecule and it results in N
lists of LMO identifiers. To perform the integration within the basin of atom
M we need to use an electron density function that accurately describes the
electron density in that basin, that is an electron density function expressed
in terms of all of those LMOs that contribute to p,,, in the basin of M. We
denote these LMOs required for the property evaluation of atom M as the
subset of LMOs of atom M, SSLMO(M). The smallest conceivable subset
SSLMO (M) must contain all of the LMOs that occur in either of the lists of
atom-specific LMOs of atom M and its next neighbors. Increased accuracy can
be achieved if the SSLMO (M) also contains LMOs that have been identified
as important for higher-order neighbors. With the definition of NNN given
above, we thus define an atom-specific electron density function

pia(x,y,2,NNN) =23 \Plocloc (where ie SSLMO{(M,NNN)

that may be used to determine the integrated atomic properties of atom M.
Note that the subset SSLMO (M,0) contains only the atom-specific LMOs of
atom M, and p}; (x,y,2,0) is the associated electron density function.

The evaluation of the atomic properties of M via the function py (x,y,2,NNN)
appears rather attractive because the number of LMOs that need to be consid-
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ered is not only reduced but, very importantly, there will be an upper limit to
the number of LMQs in the subsets SSLMO (M), no matter what the size of
the molecular system.

Graphical illustration

The principle of this method can be conveniently shown graphically. We
begin with an inspection of the atom-specific LMOs. In Fig. 9, the resulting
electron density functions py;(0,0,2,0) are shown for C,H,. The function
p&s(0,0,2,0) is emphasized in Fig. 9 and its shape is fairly typical. This function
has a large maximum at the position of the C5 nucleus (> 70 e a.u.”?), it ex-
tends over the entire bonding region to the next neighbors, it exhibits signifi-
cant maxima at the positions of the nuclei of the next two neighbors, and de-
creases rapidly in the regions that are further than two bonds away from C5.
Note that p¢; (0,0,2,0) and p¢,; (0,0,2,0), for example, essentially coincide in
the C5-C7 bonding region. This is of course a consequence of the procedure
because the important LMOs for this bond will be contained in the SSLMO
lists of both of these atoms. In Fig. 10, the total electron density of C,H, is
shown graphically, together with several electron density functions
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Fig. 9. Electron density functions py; (0,0,2, NNN =0) associated with the atom-specific localized
molecular orbitals of the atoms in C,oH,. The inversion center of C,,H, is at the origin, and the
molecule lies on the z axis (in A). Values of p are in e a.u.™® (see Fig. 1 for atom numbering).
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Fig. 10. The electron density functions pge (0,0,2, NNN) of C,,H, shown as a function of NNN.
The molecular electron density function p,(0,0,z) is superimposed as a solid line (see Fig. 9 for
units and molecular orientation).

Pée (0,0,2,NNN) associated with the subsets of selected localized molecular
orbitals of atom C9, are illustrated as a function of NNN. Figure 10 shows in
a compelling fashion that the electron density distribution in the basin of the
C9 atom can indeed be excellently described by electron density functions of
the type p3;. Whereas there are no significant deviations apparent in the C9
basin in this Fig. 10, there might still be differences in other regions, and this
possibility will be examined quantitatively below. Probably the best single
graphical representation of the essentials of the method is illustrated in Fig.
11. On top in Fig. 11, a 3-dimensional contour plot is shown of the molecular
electron density function p,.(x,y,2) of C,H,. This plot was generated with the
programs PSICON ad PSI2/88 [25], which were easily adapted to contour elec-
tron density functions described by a 3-dimensional matrix of p,,(x,y,z) val-
ues computed with the program NETZ3D [26]. After localization and determi-
nation of the subsets of selected localized MOs, we can determine the atom-
specific electron density functions pyy (x,y,2,NNN). The resulting electron
density function for one of the hydrogens, pi; (x,y,2,1), is shown on the bottom
of Fig. 11. Note that the electron density distribution in the basin of the hy-
drogen and in the CH bonding region in particular shows no obvious deviation
from pnq(xy,z). Quantitative comparisons between pj;(x,y,2,NNN) and
Pmor (X,3,2,) will be made in the next section, for the polyines and the polynitriles.



63

|

1
1

Fig. 11. Top, a three-dimensional contour plot of the electron density function of butadiine. Bot-
tom, the electron density function of one of the hydrogen atoms that results after selection of the
localized molecular orbitals with NNN=1 is contoured. In both cases, contours are drawn for
p=0.01eau. 5

Computational implementation

In Scheme 1, the procedure that has been implemented to determine the
subsets SSLMO (M) and to determine the integrated atomic properties of atom
M is schematically outlined. In the first step, the molecular orbitals are local-
ized. We have employed the Boys localization [27]. The source codes of the
programs BOYLOC and PRPLIB of the quantum-chemistry program GAMESS
general atomic and molecular electronic structure system [28] were modified
so that both the MO coefficients for the basis functions and for the primitives
of the LMOs were written out to the GAMESS DAT file. The program EXTRACT-
LOCWFN was written to collect pertinent information regarding basis set and
molecular geometry and to write it, together with the wave function composed
of the LMOs and expanded in the primitives into a so-called WFN file, in a
format suitable for the electron density analysis programs. Our program LO-
CALMOID was then used to inspect the LMOs and to produce lists of the atom-
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Scheme 1. Program organization and data flow for wave function analysis.

specific LMOs for each atom. The program LOoCALMOID will be described in
detail elsewhere [29]. In short, this orbital selection algorithm operates on the
wave function expanded in the basis functions. First, for each of the occupied
LMOs the largest coefficient is searched for. Secondly, all basis function coef-
ficients of the same magnitude are searched for and this LMO is assigned to
the lists of all of those atoms that are associated with basis function coeffi-
cients of that magnitude. After all LMOs have been examined in this way and
all of the lists of atom-specific LMOs are determined, the program LOCALMOID
inquires into the definition of the neighborhood of M via the parameter NNN
(or a distance criterion). The N atom-specific subsets of LMOs SSLMO (M)
are then generated as lists of all of the LMOs that occur in either the list of the
atom-specific LMOs of the atom M or any of its neighbors, with the neighbor-
hood defined by NNN. These lists are written out to a so-called MID file. The
program SELECT-MO-WFN subsequently uses the subset selection information
contained in the MID file, together with the molecular wave function of the
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WPEFN file of the LMOs, to produce one WFN file for each atom that defines
the electron density functions py (x,y,2,NNN). With the atom-specific elec-
tron density functions py (x,y,2, NNN) determined in this way, the topological
analyses and the numerical integrations are performed with EXTREME and
PROAIM.

Performance of the method

Topological properties

In Table 5, the topological properties for all of the polyines, as determined
with the entire wave function and with the subsets of selected LMOs using a
minimal neighborhood, are given. Except for acetylene, three sets of topologi-
cal properties are given for each bond. The first entry gives the values deter-
mined with p_; and the other entries specify bond properties that were deter-
mined with the p}; functions of the two bonded atoms, respectively, as indicated
in column 2. The symmetry of the polyines intrinsically requires that the cur-
vatures A, and A, determined with the total electron density function are iden-
tical. The subset selection may result in p3; functions that are no longer per-
fectly symmetric in this regard. For all of those cases where A, and A, differ,
both values are given in Table 5 and it is found that such deviations are essen-
tially negligible. Non-nuclear attractors occur in all triple bonds at this level
and the topological parameters show the electron density to be essentially flat
in the central third of each triple bond. Despite these very small gradients of
the electron density in the bonding regions, the agreement between the topo-
logical properties determined with the entire wave functions and those deter-
mined with the subsets of LMOs is excellent.

Integrated properties

Results obtained both with and without the new method are shown in Table
6. In Fig. 12, the integrated atomic dipoles determined both with the total
electron density functions and with the electron density functions resulting
after subset selection with NNN =1, are plotted versus each other. The agree-
ment is excellent. Similar agreement was also found for the integrated popu-
lations and for the kinetic energies of the atoms. Linear regression resulted in
intercepts of zero ( +0.004) and slopes of unity ( 0.01). The average error
for the integrated population is thus less than 1% and that for the integrated
energies is less than 0.1% of an atomic unit (0.6275 kcal mol—!). The absolute
errors are found to vary to some extent, as illustrated in Fig. 13. In Fig. 13 the
absolute errors of the atom populations and the kinetic energies are shown. As
can be seen, the integrated properties of the hydrogen are reproduced in an
excellent fashion, even if only next neighbors are considered for the py; func-
tion. For the heavy atoms, the populations may deviate by up to 0.06 kcal mol !
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TABLE 5

Topological properties for polyines®

A-B Bond AtomP ra? rs p Ay Aa As
C.,H, H-C=C,-H
C-C All 0.4486 0.7198 0.3651 —0.2853 0.4359
BCP C 0.4486 0.7198 0.3651 —0.2853 0.4359
C-C All 0.5842 0.5842 0.3678 —0.2826 —0.1415
NNA C 0.5842 0.5842 0.3678 —0.2826 —0.1415
C-H All 0.4279 0.6374 0.2643 —0.5806 0.4549
C4H2 H—Caacl—C2EC4—H
C1-C2 All 0.7041 0.7041 0.2714 —0.4088 0.0531
C1 0.7019 0.7064 0.2713 —0.4083 0.5284
C3-C1 All 0.4462 0.7285 0.3607 —-0.2921 0.4963
BCP at C3 C1 0.4462 0.7285 0.3607 —-0.2921 0.4964
C3 0.4461 0.7285 0.3606 —0.2986 —0.2942 0.4975
C3-C1 All 0.6049 0.5698 0.3646 -0.2874 —0.1391
NNA C1 0.6049 0.5698 0.3646 —0.2873 -0.1391
C3 0.6050 0.5697 0.3646 —0.2879 —0.1393
C3-C1 All 0.7239 0.4508 0.3626 —0.2836 0.3847
BCPat C1 C1 0.7239 0.4507 0.3626 —0.2835 0.3850
C3 0.7240 0.4507 0.3626 —0.2833 0.3852
H5-C3 All 0.4236 0.6424 0.2641 —0.5861 0.4600
C3 0.4236 0.6424 0.2641 —0.5889 0.4600
H 0.3938 0.6722 0.0567 —0.0746 0.0106
CegH, H-Cs=C;-C,=C,-C,=Cs4-H
C1-C2 All 0.4482 0.7334 0.3582 —-0.2913 0.4454
BCP at C1 Ci 0.4480 0.7336 0.3581 —0.2967 0.4475
Ci1-C2 All 0.5908 0.5908 0.3611 —0.2946 —0.1368
NNA C 0.5911 0.5905 0.3611 —0.2950 —0.1372
C3-C1 All 0.6730 0.7304 0.2731 —0.4081 0.0510
C1 0.6751 0.7283 0.2730 —0.4096 0.0506
C3 0.6709 0.7325 0.2729 —0.4095 0.0511
C5-C3 All 0.4465 0.7291 0.3603 —0.2955 0.4936
BCP at C5 C3 0.4465 0.7291 0.3603 —0.2962 0.4937
Cs5 0.4464 0.7292 0.3602 —0.3035 0.4947
C5-C3 All 0.6056 0.5700 0.3642 —0.2890 —0.1383
NNA C3 0.6056 0.5699 0.3642 —0.2891 —0.1383
C5 0.6058 0.5699 0.3642 -0.2899 —0.1385
C5-C3 All 0.7248 0.4508 0.3622 —0.2839 0.3838
BCPat C3 C3 0.7248 0.4508 0.3622 —0.2838 0.3840
Cb 0.7249 0.4508 0.3622 —0.2836 0.3842
H7-C5 All 0.4221 0.6444 0.2640 —0.5885 0.4621
C5 0.4221 0.6444 0.2640 —0.5917 0.4621
H7 0.4219 0.6446 0.2639 —0.5916 0.4618
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A-B Bond AtomP TP s p Ay Ao As
CsH, H-C=Cs-Cy=C,-
C1-C2 All 0.6989 0.6989 0.2751 —0.4089 0.0465
C1 0.6968 0.7011 0.2750 -0.4131 0.0463
C3-C1 All 0.4486 0.7341 0.3577 —0.2947 0.4411
BCP at C3 C1 0.4486 0.7341 0.3577 —0.2954 0.4413
C3 0.4485 0.7342 0.3577 —0.3015 —-0.2973 0.4424
C3-C1 All 0.5913 0.5915 0.3607 —0.2966 —0.1357
NNA C1 0.5909 0.5918 0.3606 —0.2969 —0.1360
C3 0.5914 0.5913 0.3606 —0.2973 —0.1360
C3-C1 All 0.7345 0.4482 0.3577 —-0.2916 0.4498
BCP at C1 C1 0.7347 0.4481 0.3576 —0.2967 0.4471
C3 0.7346 0.4482 0.3577 —-0.2915 —0.2914 0.4455
C5-C3 All 0.6631 0.7396 0.2733 —0.4076 0.0514
C3 0.6652 0.7376 0.2732 —0.4094 0.0508
Cs 0.6611 0.7417 0.2731 —0.4092 0.0515
C7-Cb All 0.4467 0.7291 0.3602 —0.2969 0.4914
BCP at C7 C5 0.4467 0.7292 0.3602 —0.2978 —0.2973 0.4915
C7 0.4466 0.7292 0.3601 —0.3053 —0.3002 0.4925
C7-Cb All 0.6055 0.5703 0.3641 —0.2895 —0.1381
NNA C5 0.6055 0.5703 0.3641 —0.2896 —0.1382
C7 0.6056 0.5702 0.3641 —0.2905 —0.1384
C7-Cb All 0.7251 0.4507 0.3621 —0.2836 0.3851
BCP at C5 C5 0.7251 0.4507 0.3621 —0.2836 0.3854
C7 0.7252 0.4506 0.3621 —0.2833 0.3856
H9-C7 All 0.4214 0.6453 0.2640 —0.5898 0.4631
C7 0.4213 0.6453 0.2640 —0.5931 0.4631
H9 0.4211 0.6455 0.2639 —0.5930 0.4628
C1oH, H-Cy=Cr-Cs=C;5-C,=
C1-C2 All 0.4487 0.7352 0.3573 —0.2951 0.4404
BCP C1 0.4486 0.7353 0.3572 —-0.3016 ~0.2975 0.4418
C1-C2 All 0.5919 0.5919 0.3602 —0.2987 —0.1344
NNA C 0.5921 0.5918 0.3602 —0.2993 —0.2989 —0.1347
C3-C1 All 0.6880 0.7088 0.2755 —0.4091 0.0460
C1 0.6902 0.7066 0.2754 —0.4139 —0.4122 0.0457
C3 0.6858 0.7110 0.2754 —0.4138 —0.4122 0.0459
C5-C3 All 0.4489 0.7341 0.3577 —0.2961 0.4385
BCP at C5 C3 0.4488 0.7341 0.3577 —0.2971 —0.2966 0.4388
C5-C3 All 0.5910 0.5919 0.3606 —0.2971 —0.1355
NNA C3 0.5907 0.5923 0.3606 —0.2975 —0.1358
C5-C3 All 0.7348 0.4481 0.3576 —0.2914 0.4466
BCP at C3 C3 0.4480 0.7349 0.3575 —0.2964 0.4487
H11-C9 All 0.4210 0.6456 0.2640 —0.5906 0.4636
Hiil 0.4208 0.6458 0.2639 —0.5938 —0.5918 0.4632
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TABLE 5 (continued)

A-B Bond Atom® ra? rs p Ay Ag Ag
CooH, H-Cg=C;7-C;5=C;3-C;y=Cs-C7=C5-C3=C;-
C1-C2 All 0.6978 0.6978 0.2760 —0.4098 0.0451
C1 0.6978 0.6978 0.2760 —0.4102 0.0451
C1-C3 All 0.7358 0.4488 0.3569 —0.2960 0.4397
BCP at C1 C1 0.7358 0.4488 0.3569 —0.2968 —0.2963 0.4397
C1-C3 All 0.5922 0.5925 0.3599 —0.2998 —0.1337
NNA C3 0.5922 0.5925 0.3599 —0.3000 —0.1337
C1 0.56922 0.5925 0.3599 —0.3000 —0.1337
C1-C3 All 0.4490 0.7357 0.3570 —0.2965 0.4381
BCP at C3 C3 0.4490 0.7357 0.3570 —0.2974 —0.2969 0.4381
C5-C3 All 0.6930 0.7026 0.2760 —0.4097 0.0452
C3 0.6930 0.7026 0.2760 —0.4103 —0.4099 0.0452
H-C19 All 0.4205 0.6464 0.2639 -0.5913 0.4643
H 0.4205 0.6464 0.2639 —-0.5917 —0.5915 0.4643

®For an explanation of headings see footnotes to Table 3.

"For each bond A-B, the characteristics of bond critical points and the non-nuclear attractor are
given, as determined with the entire wave function (all) and with the subset of the MOs deter-
mined for the specified atom.

and atom kinetic energies by up to 45 kcal mol~’. Such deviations in the pop-
ulations may be acceptable for many types of qualitative applications. Note
that these deviations are an order of magnitude smaller than the typical dif-
ferences between integrated populations and basis set partitioning popula-
tions. We show below that a much better and virtually exact agreement can be
obtained if the parameter NNN is increased.

IP,,=0.991IP,, +0.0017 (R%=1.000)
Heet =1.0024,, +0.0013 (R*=1.000)
T =0.999T,, +0.0036 (R?=1.000)

Time requirements

In Fig. 14, the time requirements are plotted as a function of the number of
triple bonds (size parameter), both without (solid) and with (unfilled marks)
the localized orbital selection algorithm, for the C1, C3, and H atoms of the
polyines. Consider, for example, the time requirements for the C1 atoms.
Whereas there is little benefit in using a subset of selected LMOs for the small
butadiine molecule, the advantage of the new technique becomes apparent as
n increases. In particular, it is instantaneously obvious that the time require-
ment does not increase linearly with the size of the system. It is this feature
that makes this method particularly powerful for the rigorous electron density
analysis of rather large molecules. The advantage of the subset selection method
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Fig. 12. Atomic dipole moment determined by integration of the electron density function result-
ing both from all and from subsets of localized molecular orbitals (NNN=1), correlated in a linear
fashion with a slope of unity and an intercept of zero.

increases as the size of the system increases. Time savings are shown as a

percentage in Fig. 15. Time savings amount to up to 80 percent for the largest
system in this series.

Polynitriles

The analysis of the polynitriles gave results that lead to the same conclu-
sions as the data discussed for the polyines. As an example, we present the
results of the topological analysis of C;N;H; in Table 7, and the corresponding
integrated properties and timing information are given in Table 8.

Neighborhood selection dependence

The deviations in the topological and integrated properties found for the
polyines are related to the characteristics of the LMOs. LMOs may contain
“tails”, that is small local maxima may occur outside the region in which the
MO is concentrated. For example, the LMO shown in Fig. 8 largely makes use
of primitives centered on the terminal C3 carbon and H atoms, but it also
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1) and of the population (right) of the atoms C1, C3, H and of the non-nuclear

C3 bond) for the polyines C,,H., as determined with the p, and the py; electron density functions.

Fig. 13. Absolute deviations of the kinetic energy (kcal mol™

attractor (in the C1-C2 or C1-
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Fig. 14. Integration time plotted vs. the size parameter n for the polyines H- (CC) ,-H. Integration
time is given in h required on the SGI 4D/25S for the heavy atoms; on the VaxStation3100 for
hydrogen atoms. Solid marks refer to integrations of the entire wave functions and unfilled marks
refer to integrations of electron density functions derived from subsets of selected localized mo-
lecular orbitals with NNN=1.

makes use of primitives centered at the C1 atom. The orbital selection algo-
rithm will assign this LMO to the set of C3 but not to the set of C1. If NNN is
chosen as 1, then this MO will not be considered in the integration of C2,
although the small “tail” of this MO in the vicinity of C1 might affect the C1-
C2 bonding region. These “tails” are, of course, also the reason for the small
local maxima of the function shown in Fig. 9. Such tails in LMOs occur fre-
quently and their locations cannot be predicted. However, graphical inspection
of a large number of LMOs suggests that such “tails” extend no further than
into the region of the second-order neighbors. It should thus be possible to
eliminate this error by inclusion of the atom-specific subsets of LMOs of higher-
order neighbors in the computation of the reduced electron density function of
the atom that is being integrated.

The effects of the neighborhood selection on the accuracy of the integration
results has been studied for atoms C3 and H of CgH,, and for atoms C3 and N10
of C;NsH-. For each of these atoms, the subsets of LMOs used for their inte-
gration were determined by considering just next neighbors (NNN=1), all
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Fig. 15. Time saving for the determination of the integrated atomic properties of atoms C1, C3,
H and the non-nuclear attractor for the polyines C,,H, (n=1-5 and 10), based on py, electron
density functions as compared to the total electron density.

next neighbors and their next neighbors (NNN=2), and so on,up to NNN=4.
For C3 of CgH,, the four sets of selected localized molecular orbitals used for
the integration of C3 contain the atom-specific LMOs of the atoms shown.

Hy—C,=C;—C=C,—C,=C,—C=Cy—Hy,

\\\\?' y,

. J

Inspection of the integrated properties listed in Table 9 shows that consid-
eration of the second-next neighbors results in the most significant improve-
ment in the integrated charges and dipole moments. Further increase of NNN
has only an insignificant effect on these two properties. The dependence of the
atomic kinetic energy on the neighborhood selection is illustrated in Fig. 16.
In Fig. 16, the deviation of the integrated kinetic energy determined with sub-
sets of selected LMOs and the corresponding numerically exact value is plotted
versus the number of next neighbors considered. As with the charge and the
dipole moment, the atomic kinetic energy is dramatically improved by consid-
eration of the second-next neighbors, although the error may still be as large
as 3-5 kcal mol ~'. This error is essentially eliminated entirely if NNN is in-
creased to 4. Whereas charge and dipole moment can be determined to high
accuracy by using NNN=2 (or even NNN=1), fragment energy analysis ap-




TABLE 7

Topological properties of C,N,;H;* and C;N;H,"°
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A-B Bond Atom r'a rs p Ay Ag Asg
C;N,H;
C1-N2 All 0.4216 0.8574 0.3273 —-0.6424 —-0.4056 1.3347
C1 0.4214 0.8576 0.3267 —0.6414 —-0.4154 1.3430
N2 0.4216 0.8574 0.3272 —0.6423 —0.4064 1.3350
N2-C3 All 0.9164 0.5442 0.2572 —0.4474 —0.3923 0.3143
N2 0.9165 0.5441 0.2572 —0.4478 —0.3970 0.3141
C3 0.9165 0.5442 0.2572 —0.4478 —-0.3972 0.3142
C3-N4 All 0.4234 0.8573 0.3286 —0.6864 —0.4017 1.2811
C3 0.4232 0.8575 0.3281 —0.6857 —0.4088 1.2892
N4 0.4233 0.8573 0.3285 —-0.6912 —0.4053 1.2812
N4-C5 All 0.9253 0.56360 0.2542 —0.4356 —-0.3789 0.3268
N4 0.9257 0.56355 0.2541 —0.4353 -0.3793 0.3272
C5 0.9286 0.56327 0.2532 —0.4317 —-0.3752 0.3301
C5-N6 All 0.4232 0.8537 0.3337 —0.7147 —0.4057 1.2699
C5 0.4231 0.8537 0.3337 -0.7157 —0.4055 1.2699
N6 0.4231 0.8537 0.3336 —0.7195 —0.4076 1.2699
H8-C1 All 0.4423 0.6460 0.2631 —0.5930 —-0.5726 0.4857
H8 0.4422 0.6461 0.2631 —-0.5932 —0.5756 0.4854
C1 0.4422 0.6461 0.2631 —0.5932 —0.5757 0.4855
H7-C1 All 0.4496 0.6423 0.2605 —-0.5711 —0.5562 0.4819
H7 0.4502 0.6417 0.2603 —0.5697 —0.5580 0.4795
C1 0.4497 0.6423 0.2604 —0.5711 —0.5592 0.4817
H9-C3 All 0.4492 0.6485 0.2585 -0.5721 —0.5467 0.4935
H9 0.4503 0.6472 0.2581 —0.5697 ~0.5489 0.4884
C3 0.4492 0.6484 0.2585 —-0.5720 —0.5490 0.4933
H10-C5 All 0.4503 0.6462 0.2586 —-0.5712 —0.5447 0.4871
H10 0.4509 0.6455 0.2584 —0.5701 —0.5453 0.4843
C5 0.4504 0.6461 0.2586 —-0.5712 —0.5446 0.4867
N6-H11 All 0.7076 0.3402 0.3082 —0.9508 —-0.9212 0.7951
N6 0.7078 0.3401 0.3082 —0.9534 —0.9215 0.7940
H11 0.7090 0.3387 0.3078 —0.9544 —0.9229 0.7871
CsN;H;
C1-N2 Al 0.4218 0.8577 0.3270 —0.6408 —0.4083 1.3301
C1 0.4218 0.8577 0.3270 —0.6408 —0.4095 1.3304
N2 0.4218 0.8577 0.3270 —0.6408 —0.4084 1.3302
N2-C3 All 0.9144 0.5449 0.2583 —0.4506 —0.3969 0.3128
N2 0.9144 0.5449 0.2583 —0.4506 —0.3975 0.3128
C3 0.9144 0.5449 0.2583 —0.4506 —0.3975 0.3128
C3-N4 All 0.4241 0.8586 0.3276 —0.6818 —0.4054 1.2678
C3 0.4241 0.8586 0.3276 —0.6818 —0.4065 1.2680
N4 0.4241 0.8586 0.3276 —0.6818 —0.4055 1.2678
N4-C5 All 0.9214 0.5331 0.2578 —0.4458 —0.3846 0.3260
N4 0.9214 0.5331 0.2578 —0.4459 —0.3851 0.3260
C5 0.9214 0.5331 0.2578 —0.4459 —0.3851 0.3261
C5-Né6 All 0.4243 0.8588 0.3275 —0.6836 —0.3995 1.2596
C5 0.4243 0.8588 0.3275 —0.6836 —0.4003 1.2598
N6 0.4243 0.8588 0.3275 -0.6838 —0.3997 1.2596



76

TABLE 7 (continued)

A-B Bond Atom ra rs p Aq Ag As
Né6-C7 All 0.9239 0.5316 0.2568 —0.4426 —0.3794 0.3295
Né6 0.9239 0.5316 0.2567 —0.4426 —0.3794 0.3295
C7 0.9239 0.5315 0.2567 —0.4425 —-0.3794 0.3296
C7-N8 All 0.4238 0.8577 0.3284 —0.6875 —0.3962 1.2696
C7 0.4238 0.8577 0.3284 —0.6875 —0.3962 1.2696
N8 0.4238 0.8577 0.3284 —0.6877 —0.3964 1.2696
N8-C¢g All 0.9270 0.56342 0.2538 —-0.4340 —0.3758 0.3297
N8 0.9270 0.5341 0.2538 —0.4340 —-0.3759 0.3297
C9 0.9271 0.5340 0.2538 —0.4339 —0.3758 0.3298
C9-N10 All 0.4231 0.8536 0.3337 —0.7156 —0.4042 1.2727
C9 0.4230 0.8536 0.3337 —0.7156 —0.4042 1.2727
N10 0.4230 0.8536 0.3337 —0.7158 —0.4043 1.2727
H11-C1 All 0.4492 0.6428 0.2605 —-0.5716 —0.5575 0.4827
Hi1l 0.4492 0.6428 0.2605 —0.5716 —0.5579 0.4827
C1 0.4492 0.6428 0.2605 —-0.5716 —0.5579 0.4827
Hi12-C1 All 0.4413 0.6470 0.2632 —0.5944 —0.5748 0.4872
Hi12 0.4413 0.6471 0.2632 —0.5944 —0.5751 0.4872
C1 0.4413 0.6471 0.2632 —0.5944 —0.5751 0.4872
H13-C3 All 0.4485 0.6493 0.2585 —0.5727 —0.5487 0.4947
H13 0.4485 0.6493 0.2585 —0.5727 —0.5490 0.4947
C3 0.4485 0.6493 0.2585 —0.5727 —0.5490 0.4947
H14-C5 All 0.4487 0.6487  0.2587 —0.5735 —0.5473 0.4941
H14 0.4487 0.6487 0.2587 —0.5736 —0.5476 0.4941
C5 0.4487 0.6487 0.2587 —0.5735 —0.5475 0.4941
H15-C7 All 0.4491 0.6481 0.2587 —0.5733 —0.5458 0.4933
H15 0.4491 0.6481 0.2587 —-0.5734 —0.5459 0.4933
C1 0.4491 0.6481 0.2587 —0.5733 —0.5458 0.4933
H16-C9 All 0.4502 0.6461 0.2587 —0.5716 —0.5444 0.4870
H16 0.4502 0.6461 0.2587 —0.5716 —0.5445 0.4870
Co 0.4502 0.6461 0.2587 —0.5716 —0.5444 0.4870
N10-H17 All 0.7084 0.3396 0.3081 —0.9523 —0.9224 0.7942
N10 0.7084 0.3396 0.3081 —0.9526 —0.9224 0.7941
H17 0.7084 0.3395 0.3081 —0.9526 —0.9225 0.7940

aNNN: 1 fOl' C3N3H5.
bNNN=3 for CEN5H7.
“For an explanation of column headings see footnotes to Table 3.

pears considerably more sensitive to the selection of the neighborhood and the

choice of NNN =4 appears mandatory.

Similar results are obtained for the polynitriles, and the molecules C;N;H;
and CsN;H, may serve as an example. In Table 8, the integrated atomic prop-
erties that were determined with the electron density functions py (NNN=1)
for C;N;H, and piy (NNN=3) for CsN;H,, and also with p,,, in each case, are
shown. Absolute errors in populations and kinetic energies are compared
graphically in Fig. 17. Whereas there is considerable deviation when the min-



TABLE 8

Integrated properties of N-substituted polyacetylenes: polynitriles*

Atom IPP Iy T td
AIMOs Sel. MOs AlIMOs Sel. MOs AllMOs Sel. MOs AllMOs Sel. MOs

C3N;H;, E(RHF/STO0-3G)= —276.212573 a.u. with —V/T =2.00959478: NNN =1

Cl 5.159 5.131 0.7610 0.7617 36.452260 36.413355 2.75 1.55
N2 8.166 8.167 0.3287 0.3278 53.874839 53.874097 2.81 2.02
C3 4.823 4.800 0.6783 0.6804 36.234604  36.201772  3.33 2.53
N4 8.170 8.161 0.3215 0.3376 53.878349 53.837887 2.96 2.29
C5 4.806 4.796 0.6797 0.6813 36.215551 36.201322 3.46 2.23
N6 8.003 7.988 0.4774 0.4925 53.769448 53.718654 2.88 1.43
H7 1.036 1.046 0.0978 0.1096 0.658552 0.667192 2.55 1.11
HS8 1.010 1.011 0.0989 0.0983 0.636098 0.635839 2.20 0.95
H9 1.036 1.058 0.1010 0.1128 0.664721 0.685464 3.04 1.38
H10 1.038 1.048 0.0994 0.1093 0.664447 0.675895 2.86 1.30
H11 0.757 0.751 0.1640 0.1632 0.5637657 0.531462 2.14 0.92
P 44.004 43.957 273.586526 273.442939 30.95 17.711
CsNsH;, E(RHF/STO-3G) = —459.601827 a.u. with —V /T =2.01000174; NNN=3

C1 5.159 5.156 0.763 0.763 36.450795 36.447092 4.99 2.35
N2 8.165 8.165 0.330 0.330 53.871187 53.871187 5.06 2.92
C3 4.823 4.820 0.678 0.678 36.231696 36.228133 6.11 3.85
N4 8.170 8.170 0.318 0.318 53.867777 53.867764 5.68 4.34
Ch 4.811 4.809 0.680 0.680 36.220408 36.217663 6.41 5.18
N6 8.162 8.161 0.311 0.312 53.859890 53.856524 5.75 4 57
C7 4.811 4.811 0.678 0.678 36.221402 36.220986 6.31 4.69
N8 8.160 8.158 0.313 0.314 53.864441 53.860130 5.50 3.48
C9 4.805 4.805 0.682 0.682 36.214067 36.213659 5.61 3.18
N10 8.000 7.998 0476 0.477 53.764191 53.759559 4.65 2.21
H11 1.034 1.034 0.098 0.098 0.664014 0.664026 4.12 1.63
H12 1.007 1.007 0.099 0.099 0.640052 0.6400563 3.67 1.48
Hi13 1.034 1.034 0.101 0.101 0.669629 0.669640 4.83 2.74
Hi4 1.035 1.035 0.101 0.101 0.670548 0.670561 5.15 3.06
H15 1.037 1.037 0.101 0.101 0.671583 0.671588 4.96 2.99
H16 1.038 1.038 0.099 0.099 0.670893 0.670896 4.42 2.04
H17 0.755 0.754 0.164 0.164 0.541363 0.541221 3.85 1.43
2 72.006 71.992 4565.093936 455.070682 87.07 52.14

“For an explanation of column headings see footnotes to Table 4.

"Integrated populations determined with all delocalized MOs (IP) or with selected localized orbitals (IPSLO)
are (in e).

“The integrated kinetic energies are not corrected for the virial defects.

9All integrations on a SGI 4D/258.
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TABLE 9

Neighborhood selection effects on CgH, and H- (HCN )-H integrated properties®

Atom NNNP® IP s T® td

CeH,*

C3 1 5.396 0.632 36.931893 1.72
2 5.434 0.707 36.954243 2.45
3 5.434 0.707 36.954313 2.67
4 5.439 0.706 36.960321 3.11
All 5.439 0.706 36.960321 3.14

H 1 0.915 0.108 0.563154 1.22f
2 0.916 0.108 0.564092 0.94
3 09156 0.108 0.563905 1.17
4 0915 0.108 0.563908 1.25
All 0915 0.108 0.563885 2.30

CsN:H#

C3 1 4.794 0.681 36.5563362 2.89
2 4.820 0.678 36.590448 3.65
3 4.820 0.678 36.590477 3.85
4 4.823 0.678 36.593768 4.80
All 4.823 0.678 36.594076 6.11

N10 1 7.984 0.491 54.249227 1.68
2 7.998 0.477 54.296635 2.01
3 7.998 0.476 54.297248 2.21
4 8.000 0.476 54.301285 2,73
All 8.000 0.476 54.301926 4.65

*For an explanation of column headings see footnotes to Table 4.

>The number of next neighbors considered in the selection of the localized molecular orbitals.
°T values are corrected for the virial defect.

9ntegration times refer to CPU time on an SGI Personal Iris 4D/25S.

*E(RHF/STO-3G) = —300.078097 a.u. with — V/T=2.00643103.

This integration time on a VaxStation3100.

8(CN);H,, E(RHF/STO0-3G) = —459.601827 a.u. with — V/T=2.01000174.

imal neighborhood is considered, selection of the subset with NNN =3 dra-
matically reduces this error to acceptable values in all cases ( <0.03 for popu-
lation and <2 kcal mol~? for kinetic energy).

The increased accuracy gained with the increase in NNN leads of course to
higher integration time requirements, as is shown for a few atoms in Fig. 18.
Figure 14 shows that the integration time requirement per atom increases
steeply at the beginning and then shows only a very slow increase as the size
of the system increases. This is equivalent to saying that there is a maximum
number of LMOs that need to be considered for a given atom. With increasing
NNN, this maximum number of LMOs becomes larger, and the advantage of
the subset selection method becomes apparent only for larger molecules. Fig-
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Fig. 16. Effect of the number of next neighbors on the integrated kinetic energy of atoms C3 and
H in CgH, and on atoms C3 and N10 in C;N;H,. Energy is given relative to the value determined
with the total electron density function (in kcal mol=1).

ure 18 shows significant time savings still for C;N;H, but only modest ones for
CgH,. The point is perfectly made by comparison of the integration times re-
quired for C1 in the polynitriles C,N,H,.,, (n=1-5 and 10) with an NNN
value of 4 (Fig. 19). This selection of NNN results in excellent agreement
between values derived from p., and from p3; (NNN=4). Topological prop-
erties of the C1 basins are documented in Table 10 and the integrated proper-
ties are listed in Table 11.

Applicability to general basis sets

Hexatriine was studied to test the performance of the orbital selection al-
gorithm regarding its applicability to general basis sets. Minimal (STO-3G),
split-valence (e.g. 3-21G, 6-31G), and triple-{ type basis sets (e.g. 6-311G), in
addition to several polarized basis sets (3-21G*, 6-31G*, 6-311G*) were con-
sidered. In each case, the electron density functions calculated for the opti-
mized structures (Table 12) was analyzed. The topological properties are doc-
umented in Table 13; in Table 14 the integrated atomic properties of C1 and
H are summarized. Integrated atomic properties were determined both with
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Fig. 17. Absolute error in the population and in the kinetic energy shown for C;N;H; and CsNgH-,
as determined with the electron density functions py; (NNN=1) and py; (NNN=3). Atom
numbers are those for C;N,H, and the corresponding atoms in the larger molecule.
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Fig. 18. Time saving for the determination of integrated atomic properties for selected atoms of
CgH, (H and C3) and C;N;H; (C3 and N10) as a function of the neighborhood selection.

the total electron density distribution r,,,, and with the electron density func-
tions p¢, and pf, using a minimal neighborhood in each subset selection.
The characteristic values of the critical points are excellently reproduced
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Fig. 19. Integration time requirements for the C1 atoms in the polynitriles C,N, H, ., (n=1-5
and 10), using the electron density functions p_, and pg; (NNN=4).

(Table 13) at all theoretical levels. The topological parameters differ at most
by a few thousand, a difference that is within the numerical accuracy of the
methods by which the properties are computed. Absolute errors in atom pop-
ulation, atomic first moment, and atom kinetic energy are compared graphi-
cally in Fig. 20 for the different basis sets. The absolute deviations of the pop-
ulation and of the dipole moment are relatively small and of the same magnitude
or less than the corresponding values discussed for the polyines with the min-
imal basis set (vide infra). Absolute deviation of the population is less than
+0.05 and atomic dipole moments differ by less than +0.015 e a.u. Differences
in the kinetic energies may become as large as 20 kcal mol~"' with the split-
valance basis sets, but the deviations generally are significantly smaller in the
case of the split-valence basis sets, compared to the minimal basis set results.
The accurate determination of the kinetic energy would require the inclusion
of second-generation neighbors (vide supra). Absolute time requirements for
the integrations do of course increase with the size of the basis sets (Table 14)
but Fig. 21 shows that the relative time savings is comparatively independent
of the specific basis set. The orbital selection algorithm performs with equal
efficiency for all kinds of basis set.

This preliminary examination of basis set dependency suggests that the de-
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TABLE 10

Topological properties for the C1 basins in H- (HCN),,-H*

A-B bond Atom fA s P 11 A 9 A3
n=1
C-N1 All 0.4208 0.6148 0.3330 —0.6707 —0.4096 1.3391
H,-C1 All 0.4471 0.6417 0.2630 —0.5857 —0.5649 0.4804
H_.-C1 All 0.4526 0.6382 0.2605 —0.5669 —0.5517 0.4730
n=2
C-N1 All 0.4213 0.8565 0.3280 —0.6456 —0.4033 1.3404
H,-C1 All 0.4503 0.6415 0.2605 —0.5704 —0.5546 0.4808
H.-C1 All 0.4436 0.6445 0.2631 —0.5912 —0.5700 (0.4837
n=3
C1-N2 All 0.4216 0.8574 0.3273 —0.6424 —0.4056 1.3347
C1 0.4216 0.8574 0.3273 —0.6424 —0.4056 1.3347
H,-C1 All 0.4496 0.6423 0.2605 -0.5711 —0.55662 0.4819
C1 0.4496 0.6423 0.2605 —-0.5711 —0.5562 0.4819
H.-C1 All 0.4423 0.6460 0.2631 —0.5930 —0.5726 0.4857
C1 0.4423 0.6460 0.2631 —0.5930 —0.5726 0.4857
n=4
C1-N2 All 0.4217 0.8576 0.3271 —0.6413 —0.4074 1.3315
C1 0.4217 0.8576 0.3271 —0.6413 —0.4074 1.3315
H.,-C1 All 0.4493 0.6426 0.2605 —0.6715 —0.55671 0.4824
C1 0.4493 0.6426 0.2605 —-0.5715 —0.55671 0.4824
H.-C1 All 0.4417 0.6467 0.2632 —0.5939 —0.5740 0.4866
C1 0.4417 0.6467 0.2632 —0.5939 —0.5740 0.4866
n=5
C1-N2 All 0.4218 0.8577 0.3270 —0.6408 —0.4083 1.3301
C1 0.4218 0.8577 0.3270 —0.6408 —0.4084 1.3302
H.-C1 All 0.4492 0.6428 0.2605 —0.5716 —0.5575 0.4827
C1 0.4492 0.6428 0.2605 -0.5716 —0.55676 0.4827
H.-C1 All 0.4413 0.6470 0.2632 —0.5944 —0.5748 0.4872
C1 0.4413 0.6470 0.2632 —0.5944 —0.5748 0.4872
n=10
C1-N2 All 0.4219 0.8579 0.3269 —0.6402 —0.4097 1.3284
C1 0.8579 0.4219 0.3269 —0.6402 —0.4099 1.3284
H.,-C1 All 0.4490 0.6431 0.2605 -0.5718 —0.5581 0.4831
C1 0.4490 0.6431 0.2605 —0.5718 —0.5582 0.4831
H.-C1 All 0.4408 0.6477 0.2633 —0.5952 —0.5759 0.4881
C1 0.4408 0.6477 0.2633 —0.5952 —0.5760 0.4881

2All orbital selections done with NNN =4. For an explanation of column headings see footnotes

to Table 3.
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TABLE 11

Integration time requirements for C1 in polynitriles H~ (HCN),,-H, both with and without orbital
selection®

n IP i T® t
AllMOs Sel. MOs Al MOs Sel. MOs All MOs Sel. MOs AllMOs Sel
MOs
5.141 0.749 36.727055 1.03
5.157 0.758 36.785493 2.02

5.159 5.159 0.761 0.761 36.802011  36.802011 2.75 2.63
5.159 5.159 0.762 0.767 36.810299  36.809932 3.7 2.73
5.159 5.158 0.763 0.763 36.8156366  36.814869 4.99 291
5.158 5.157 0.762 0.762 36.826510  36.826972  13.62 3.46

S W QO DD

1

2All orbital selections done with NNN =4. For an explanation of column headings see footnotes
to Table 4.
PKinetic energies are corrected for the virial defect of the wave functions.

TABLE 12

Geometry and energy of hexatriine at various theoretical levels®

Basis set H-C C5-C3 C3-C1 C1-C2 Energy -v/T

STO-3G 1.0665 1.1766 1.4034 1.1816 —225.336835 2.00606962
3-21G 1.0515 1.1908 1.3690 1.1923 —226.914828 2.00367761
3-21G* 1.0698 1.1877 1.3863 1.1909 —227.108734 2.02221608
6-31G 1.0535 1.1966 1.3766 1.1985 —225.336835 2.00606962
6-31G* 1.0573 1.1881 1.3851 1.1915 —228.178357 2.00119659
6-311G 1.0507 1.1898 1.3750 1.1921 —228.154910 1.99988710
6-311G* 1.0562 1.1848 1.3803 1.1872 —228.228444 2.00031764

“Distance in A and energy in a.u.

termination of topological properties via the subsets of selected localized mo-
lecular orbitals generally performs better with the larger basis sets. The split-
valence basis sets apparently result in “larger” LMOs (owing to the smaller
exponents of the primitive functions) and, as a consequence, the lists of atom-
specific LMOs include a larger number of MOs. More detailed studies of these
features are in progress.

Interestingly, the topologically analyses of CcH, show that the non-nuclear
attractors found at the RHF /STO-3G level vanish when the split valence basis
sets 3-21G@, 6-31G, and 6-311G are employed. However, we find that these non-
nuclear attractors reoccur when the split-valence basis sets are supplemented
by polarization functions. Non-nuclear attractors with essentially the same
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TABLE 13

Basis set effects on topological properties of CgH,*

A-B Bond MOs ra s p Ay AgP

STO-3G

C1-C2 All 0.4482 0.7334 0.3582 —0.2913 0.4454

BCPatC1 C1 0.4480 0.7336 0.3581 —0.2967 0.447b

C1-C2 All 0.5908 0.5908 0.3611 —0.2946 —0.1368

NNA C 0.5911 0.5905 0.3611 —0.2950 —0.1372

C3-C1 All 0.6730 0.7304 0.2731 —0.4081 0.0510
C1 0.6751 0.7283 0.2730 —0.4096 0.0506
C3 0.6709 0.7325 0.2729 —0.4095 0.0511

H7-C5 All 0.4221 0.6444 0.2640 —0.5885 0.4621
Ch5 0.4221 0.6444 0.2640 —0.5917 0.4621
H7 0.4219 0.6446 0.2639 —0.5916 0.4618

3-21G

C1-C2 All 0.5941 0.5962 0.4036 —0.6598 0.1084

BCP at C1 C1 0.5962 0.5961 0.4036 —0.6597 0.1083

C1-C2¢ All

NNA® C1

C3-C1 All 0.6745 0.6945 0.2964 —0.5532 0.1639
C1 0.6745 0.6945 0.2964 —0.5531 0.1639

H7-C5 All 0.3584 0.6931 . 02782 —0.7424 0.6043
H7 0.3584 0.6931 0.2781 —0.7446 0.6043

3-21G*

C1-C2 All 0.4541 0.7368 0.4135 —0.6065 0.3472

BCPat C1 C1 0.4540 0.7369 0.4135 —0.6592 0.3476

C1-C2 All 0.5954 0.5954 0.4154 —0.5560 —0.0787

NNA C1 0.5954 0.5954 0.4154 —0.6072 —0.7879

C3-C1 All 0.5697 0.8166 0.3201 —0.6392 0.7157
Ci 0.5694 0.8167 0.3200 —0.6352 0.7019

H7-C5 All 0.3447 0.7152 —0.2925 -0.8314 0.5598
H7 0.3445 0.7153 0.2924 —0.8268 0.5601

6-31G

C1-C2 All 0.5992 0.5992 0.3938 —0.6227 0.0341

BCP at C1 C1 0.5995 0.5990 0.3938 -0.6226 0.0340

C1-C2* All

NNA*® Cl

C3-C1 All 0.6841 0.6925 0.2912 —0.5339 0.3160
C1 0.6841 0.6925 0.2912 —0.56339 0.3159

H7-C5 All 0.3647 0.6888 0.2782 —0.7498 0.5015
H7 0.3647 (0.6888 0.2781 —0.7515 0.5007
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TABLE 13 (continued)

A-B Bond MOs 'a rs p A A5°
6-31G*
C1-C2 All 0.4403 0.7511 0.4119 —0.5969 0.4799
BCP at C1 C1 0.4403 0.7512 0.4119 —0.6467 0.4805
Ci1-C2 All 0.5958 0.5958 0.4147 —0.5964 —0.8459
NNA Ci 0.5957 0.5958 0.4147 —0.6445 —0.8465
C3-C1 All 0.6851 0.7001 0.3134 —0.6235 0.2221
C1 0.6851 0.7001 0.3134 —0.6220 0.2221
H7-C5 All 0.3456 0.7117 0.2952 —0.8531 (0.4273
H7 0.3456 0.7117 0.29519 —0.8490 0.4273
6-311G
C1-C2 All 0.5961 0.5960 0.3987 —0.6522 0.0818
BCP at C1 C1 0.5961 0.5960 0.3987 —0.6522 0.0818
C1-C2b All
C1
C3-C1 All 0.6813 0.6938 0.2945 —0.5464 0.2741
C1 0.6813 0.6938 0.2945 —0.5464 0.2741
H7-C5 All 0.3556 0.6952 0.2819 —0.7765 0.5896
H7 0.3556 0.6952 0.2819 —0.7786 0.5896
6-311G*
C1-C2 All 0.4976 0.6896 0.4187 —0.6449 0.0755
BCP at C1 Cl 0.4976 0.6896 0.4187 —0.6921 0.0754
C1-C2 All 0.5936 0.5936 0.4189 —0.6425 —0.2174
NNA Ci 0.5934 0.5938 0.4189 —0.6893 —-0.2177
C3-C1 All 0.6783 0.7020 0.3145 —0.6243 0.1917
C1 0.6783 0.7020 0.3145 —0.6253 0.1916
H7-C5 All 0.3444 0.7118 0.2984 —0.8660 0.5323
H7 0.3444 0.7118 0.2983 —0.8626 0.5322

“For an explanation of column headings see footnotes to Table 3.
b1,=1 in all cases.
“No non-nuclear attractor.

characteristics occur in all triple bonds at the RHF level with the 3-21G*, the
6-31G*, and the 6-311G* basis sets. This finding indicates that polarization
functions play an important role in the correct description of triple bonds and
second-order polarization functions, f-type functions, might indeed be crucial.
Clearly, more detailed higher-level studies, with the best basis sets and includ-
ing correlation corrections, are required to investigate this intriguing feature
and its implications for the properties of polyines. With the methods described,
we can now proceed to tackle this interesting problem with higher level elec-
tron density studies of the polyines in an efficient way, even for rather ex-
tended systems.
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Fig. 20. Absolute deviation in the atom population, first atomic moment (in e a.u.), and atom
kinetic energy (in kcal mol~'), determined with the electron density functions py; (NNN=1)
and p,,..;, respectively, in dependence on the theoretical model.
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based on the electron density functions p3; (NNN=1), in dependence on the basis set.

CONCLUSION

The theoretical principles of two methods that allow for a more efficient
determination of integrated atomic properties have been described. The meth-
ods were computationally implemented and tested for a series of polyines C,, H,
and a series of polynitrils C,N,H,, ., (n=1-5 and 10). Both of these methods
are based on atom-specific electron density functions that accurately describe
the electron density distribution in the basin of the atom whose properties are
being determined.

The first of these methods aims at reducing the number of primitive func-
tions considered in the integration and the atom specific electron density func-
tion pm (x,y,2,NNN) has been introduced to achieve this aim. The second
method is directed at reducing the number of MOs that need to be considered
for the integration of a specific atom. The sequence involving MO localization,
selection of atom-specific sets of LMOs, and subsequent determination of atom-
specific subsets of LMOs has been developed. The electron density function
pu (x,y,2,NNN) determined by this sequence has been shown to produce atomic
properties that are in excellent agreement with values derived from p,,, and
that this method performs its task exceptionally well.

For both of these new methods the concept of the “neighborhood of an atom”
is crucial for the determination of the electron density functions and the pa-
rameter NNN was introduced to define the neighborhood. Although NNN is
easily defined via connectivity in the test cases discussed, this parameter is
more generally defined by a distance criterion. For the first method, NNN
follows from the exponents of the primitive functions and NNN =2 yields ex-
cellent results. For the second method, NNN needs to be determined in a heu-
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ristic fashion. Consideration of all neighboring atoms, and of their neighbors
too, yields rather satisfactory values of population and the atomic dipole mo-
ment. Kinetic energy values are more susceptible to the selection of NNN. An
NNN value of 4 reproduces all integrated properties essentially exactly.

The method based on the selection of subsets of LMOs has been shown to
significantly reduce the integration time requirements. In particular, we have
emphasized that the time savings increase with the size of the system because
there exists an upper limit to the number of LMOs that need to be considered
for each atom. The primitive elimination method, in contrast, leads only to
modest increases in efficiency with the current integration program. Never-
theless, this method has tremendous potential if the appropriate changes are
made to the integration algorithm.

The preliminary study of basis set effects indicates that the subset selection
technique performs equally well for all kinds of basis sets. This result is sig-
nificant because it suggests that the method can be successfully applied to
molecules that are described by “mixed” basis sets [30,31]. Especially for the
study of very large molecules, such as pharmaceutically interesting drugs or
for physiologically active biopolymers, for example, the “splicing” of basis sets
might prove essential and recent systematic studies [32] are indeed
encouraging.

Ultimately, it is intended to combine the methods of obtaining atom-specific
electron density functions with the least number of localized molecular orbitals
expanded in the least number of primitives. The results presented here dem-
onstrate that the determination of integrated atomic properties could be car-
ried out rather efficiently with such electron density functions and with an
appropriate choice of the neighborhood. Greatly reduced integration times can
be achieved while maintaining the generality, the rigor, and the accuracy of
the topological method. It is emphasized that all of the manipulations that lead
to the functions p); and py; are performed after the wave functions have been
determined. The rigorous electron density analysis of very large molecules ap-
pears feasible.
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APPENDIX: Z-MATRIX OF C,,N,oH,,

C\N, 1, CN1\C, 2, CN2, 1, AI\N, 3, CN3, 2, A2, 1, 180., 0\ C, 4, CN4, 3,
A3, 2, 180., 0\ N, 5, CN5, 4, A4, 3, 180., 0\ C, 6, CN6, 5, A5, 4, 180., 0\N, 7,
CN7, 6, A6, 5, 180., 0\C, 8, CN8, 7, A7, 6, 180., 0\ N, 9, CN9, 8, A8, 7, 180.,
0\ C, 10, CN10, 9, A9, 8, 180., 0\ N, 11, CN11, 10, A10, 9, 180., 0\ C, 12, CN12,
11, A11, 10, 180., O\ N, 13, CN13, 12, A12, 11, 180., 0\ C, 14, CN14, 13, A13,
12, 180., 0\ N, 15, CN15, 14, Al4, 13, 180., 0\ C, 16, CN16, 15, A15, 14, 180.,
0\N, 17, CN17, 16, A16, 15, 180., 0\ C, 18, CN18, 17, A17, 16, 180., 0\ N, 19,
CN19, 18, A18, 17,180., 0\ H, 1, H1, 2, AH1, 3, 0., 0\ H, 1, H2, 2, AH2, 3, 180.,
O\ H, 3, H3, 2, AH3, 1, 0., 0\ H, 5, H4, 4, AH4, 3, 0., 0\ H, 7, H5, 6, AH5, 5, 0.,
0\ H, 9, H6, 8, AH6, 7, 0., 0\ H, 11, H7, 10, AH7, 9, 0., 0\ H, 13, H8, 12, AHS,
11, 0., 0\ H, 15, H9, 14, AH9, 13, 0., 0\ H, 17, H10, 16, AH10, 15, 0., 0\ H, 19,
H11, 18, AH11, 17, 0., 0\ H, 20, H12, 19, AH12, 18, 180., 0\ \AH1 =

124.706262\AH2 =  119.058347\AH3 =  117.041922\ AH4
=117.222819\AH5 = 117.218103\AH6 = 117.241256\AH7 =
117.22364\AH8 =  117.196499\AH9 =  117.159884\ AH10
—117.069291\ AH11 = 116.459942\AH12 = 108549184\ A1 =

114.256748\ A2 = 118.910588\ A3 = 114.147033\ A4 = 118.858381\ A5 =
114.128474\ A6 = 118.796024\ A7 = 114.137551\ A8 = 118.81138\ A9 =
114.204265\ A10 = 118.795881\ A1l = 114.193688\ A12 = 118.782361\ A13

= 114210306\ Al4 = 118.784794\A15 = 114.233486\Al6 =
118.851862\ A17 =  114.262205\A18 = 118545731\H1 =
1092026\ H2=1.088401\H3 = 1.097887\H4 = 1.097596\H5 =
1.097519\H6 = 1.097393\H7 = 1.097308\H8 = 1.097255\H9 =
1.097146\ H10 = 1.097026\H11 = 1.096217\H12 = 1.04789\CN1 =
1.278391\ CN2 = 1.458152\ CN3 = 1.282117\CN4 = 1.452962\CN5 =
1.283024\CN6 = 1.452547\CN7 = 1.282953\ CN8 = 1.452609\ CN9 =

1.28303\ CN10 = 1.453041\ CN11 = 1.282845\ CN12 = 1.453102\ CN13
1.28263\ CN14 = 1.453527\ CN15 = 1.282193\ CN16 = 1.454818\ CN17 =
1.28073\ CN18 = 1.460393\ CN19 = 1.275951





