# Phosphorus Analogues of Diazonium Ions. 2. Protonation of N<sub>2</sub>, PN, and P<sub>2</sub>

Rainer Glaser,\* Christopher J. Horan, and Paul E. Haney

Department of Chemistry, University of Missouri, Columbia, Missouri 65211

Received: August 31, 1992

The potential energy surfaces of protonated N<sub>2</sub>, P<sub>2</sub>, and PN are explored at RHF, MP2, and CISD levels. Stationary structures were not only optimized but also characterized by computation of their vibrational frequencies at each of these levels. Model dependencies of potential energy surface characteristics, geometries, vibrational frequencies, relative isomer stabilities, and proton affinities are studied in a systematic fashion. The potential energy surface of  $HP_2^+$  exhibits dramatic model dependencies and it is clarified by a scan of the potential energy surface as a function of the H-P-P angle at the CISD level. Geometries and vibrational frequencies of the most stable isomers also are reported at the CISD(full)/6-311G(df,p) level. Accurate scale factors for bond lengths and vibrational frequencies determined for the neutral diatomics X=X can be applied successfully to the protonated species as well. End-on protonation of  $N_2$ , edge-on protonation of  $P_2$ , and N-protonation of PN are favored, and our best estimates for the proton affinities are 116.3, 161.2, and 194.2 kcal/mol, respectively. Proton affinities parallel the increase of the polarizabilities ( $N_2 < NP < P_2$ ) but the polarizabilities perpendicular to the bond axis,  $\alpha_{perp}$ , are significantly small than  $\alpha_{para}$  and their ratio  $\alpha_{para}/\alpha_{perp}$  is not related to the isomer preference energies. For protonated  $N_2$  and  $P_2$ , the isomer preference is closely related to the  $X_2$  bond length per se and the structural preferences of the protonated systems thus reflect the same factors that also determine the X=X bond lengths in the neutral diatomics. The proton is atypically electrophilic compared to carbenium ions and the carbenium ion affinities of  $N_2$ ,  $P_2$ , and PN are generally much smaller than proton affinities. While the potential energy surfaces of protonated and methylated  $N_2$  and PN are qualitatively similar, the respective derivatives of  $P_2$  differ significantly.

# Introduction

The study of molecules with multiple bonds between the group V elements N and P has received increasing attention in recent years both from experimental and theoretical chemists.<sup>2</sup> One of the most fundamental questions concerns the feasibility of electrophilic attack on the triple bonds in N<sub>2</sub>, PN, and P<sub>2</sub>, or, in other words, the *chemistry of diazonium ions and their P analogues*. The formal replacement of N by P in diazonium ions I may lead to the ions II-IV or bridged isomers thereof. Aromatic

| R—N⁺≣N | R—P⁺≡P | R—N⁺≣P | R—P⁺≣N |
|--------|--------|--------|--------|
| I      | II     | III    | īv     |

diazonium ions are well known and several of the much less stable alkyldiazonium ions<sup>3</sup> also have been characterized in superacid media,<sup>4</sup> in the gas phase,<sup>5</sup> and with theoretical methods.<sup>6-10</sup> While the experimental gas-phase data allow one to judge the quality of calculated energies, experimentally determined structural data remains scarce. Alkyldiazonium ions have been stabilized by complexation to transition metals, but in these complexes the diazonium ion is bent and it differs greatly from the free ion.<sup>11,12</sup> Our recent X-ray structure determination of the  $\beta$ , $\beta$ -diethoxyvinyldiazonium hexachloroantimonate13 represents the first solid state structure of any alkenediazonium ion while the  $C_{0}$ -N and  $C_{6}$ -P analogues<sup>14</sup> have been known. Diphosphonium ions II are still elusive and, in fact, there are only a few compounds known that contain triply bonded  $P_2$ .<sup>15</sup> Of the PN derivatives, two aromatic representatives of III have been reported by Niecke et al., namely the systems [(t-butyl)<sub>2</sub>PSe<sub>2</sub>]·(PNAr)<sup>16</sup> and AlCl<sub>4</sub>- $(PNAr)^{17}$  (Ar = 2,4,6-t-butylphenyl), while aliphatic derivatives of III and IV remain unknown to date.

Theoretical studies of the smallest alkyl derivatives of I–IV, the methyl derivatives, strongly suggest that the analogues II–IV of diazonium ions might be synthetically accessible.<sup>18</sup> Because of the still very limited availability of experimental data in this area, we were concerned about the adequacy of the theoretical levels employed—up to MP4(fc,sdtq)/6-311G(df,p)//MP2(fu)/

6-311G(df,p). For this reason, it seemed mandated to investigate the dependency of the results on the theoretical model and we chose to study the smaller protonated systems at higher levels of ab initio theory. In this article, we report on the systems I-IV, where R = H, the protonated species 1-4. Stationary structures on the potential energy surfaces were located and characterized by computation of the Hessian matrices at several levels up to CISD(full)/6-311G(df,p). We describe the results of our potential energy surface analyses with regard to isomer preferences and isomerizations, report the geometries of pertinent stationary structures, discuss proton affinities, and predict vibrational frequencies and other spectroscopic properties. The performances of the RHF, MP2, and CISD methods are analyzed systematically with regard to the accuracy of geometries and spectroscopic data and are discussed in comparison to the respective results for the diatomic molecules, for which experimental data exist. Comparisons to the results of prior ab initio and experimental studies of the protonated systems also are made.

# **Computational Methods**

Geometries of  $HX_2^+$  were optimized for the  $C_{\infty v}$  symmetric linear and  $C_{2v}$  symmetric bridged structures at the RHF, MP2-(full), and CISD(full) levels with the 6-31G\* basis set<sup>19</sup> and the resulting stationary structures were confirmed by computation of the Hessian matrix. If both of these structures corresponded to minima, then the  $C_s$  symmetric transition state structure also was determined. For the  $HP_2^+$  system, the potential energy surface was examined with CISD(full,6-31G\*) optimized structures along a path for varying  $\angle$  (H-P-P) angles and with full characterization of all stationary structures encountered. Gradient optimizations were used at the RHF and MP2 levels, and the Fletcher-Powell method was used for the CISD optimizations. In a few instances  $(N_2, C_{2\nu} HN_2^+)$ , the FP method failed and the ENONLY method was used successfully instead. The most stable protonated structures of N<sub>2</sub>, PN, and P<sub>2</sub> were studied also at the levels CISD(fc) and CISD(full) with the valence trip- $\zeta$  basis set 6-311G augmented by first-order polarization functions on all

Downloaded via MISSOURI UNIV SCIENCE & TECHNOLOGY on July 14, 2023 at 15:19:15 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

# TABLE I: Energies<sup>a</sup>

| Glaser | et | al. |
|--------|----|-----|
|        |    |     |

| method                | energy                                             | VZPE      | energy                                            | VZPE     | energy                                  | VZPE     |
|-----------------------|----------------------------------------------------|-----------|---------------------------------------------------|----------|-----------------------------------------|----------|
|                       | 1, $HN_{2}^{+}$ , $C_{\infty v}$                   |           | 1, $HN_2^+$ , $C_{2v}$                            |          |                                         |          |
| RHF/6-31G*            | -109.131 930                                       | 11.33 (0) | -109.052 118                                      | 7.08 (1) |                                         |          |
| MP2/6-31G*            | -109.452 168                                       | 9.91 (0)  | -109.365 304                                      | 6.08 (1) |                                         |          |
| CISD/6-31G*           | -109.431 804                                       | 10.59 (0) | -109.348 429                                      | 6.59 (1) |                                         |          |
| SCC                   | -109.460 115                                       |           | -109.376 207                                      |          |                                         |          |
| CISD(fc)/6-311G(df,p) | -109.501 546                                       |           |                                                   |          |                                         |          |
| SCC                   | -109.530 133                                       |           |                                                   |          |                                         |          |
| CISD/6-311G(df,p)     | -109.533 344                                       | 10.82 (0) |                                                   |          |                                         |          |
| SCC                   | -109.566 334                                       |           |                                                   |          |                                         |          |
|                       | <b>2.</b> HP <sub>2</sub> <sup>+</sup> . $C_{m_1}$ |           | <b>2.</b> HP <sub>2</sub> <sup>+</sup> , $C_{2n}$ |          | 2, HP <sub>2</sub> +, C,                |          |
| RHF/6-31G*            | -681.651 854                                       | 5.16(1)   | -681.670 850                                      | 5.35 (0) | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |
| MP2/6-31G*            | -681.895 156                                       | 4.87 (0)  | -681.899 601                                      | 5.47 (0) | -681.878 476                            | 4.43 (1) |
| CISD/6-31G*           | 681.888 626                                        | 4.85 (1)  | -681.902 437                                      | 5.32 (0) |                                         |          |
| SCC                   | -681.924 689                                       |           | -681.935 054                                      |          |                                         |          |
| CISD(fc)/6-311G(df,p) |                                                    |           | -681.973 105                                      |          |                                         |          |
| SCC                   |                                                    |           | 682.003 304                                       |          |                                         |          |
| CISD/6-311G(df,p)     |                                                    |           | -682.192 182                                      | 5.57 (0) |                                         |          |
| SCC                   |                                                    |           | -682.246 582                                      |          |                                         |          |
|                       | 3 HNP+ Can                                         |           | HPN+ C.                                           |          | 4. HPN <sup>+</sup> . Can               |          |
| RHF/6-31G*            | -395,446,074                                       | 10.12(0)  |                                                   |          | -395.273 046                            | 5.98(1)  |
| MP2/6-31G*            | -395.731 243                                       | 9.03 (0)  | -395.553 689                                      | 5.12(1)  | -395.601 007                            | 6.23 (0) |
| CISD/6-31G*           | -395,717 150                                       | 9.55 (0)  |                                                   |          | -395.562.086                            | 5.54 (1) |
| SCC                   | -395.748 535                                       |           |                                                   |          | -395.603 989                            |          |
| CISD(fc)/6-311G(df,p) | -395.780 254                                       |           |                                                   |          |                                         |          |
| SCC                   | -395,809 078                                       |           |                                                   |          |                                         |          |
| CISD/6-311G(df.p)     | -395.913 507                                       | 9.66 (0)  |                                                   |          |                                         |          |
| SCC                   | -395.957 272                                       | . /       |                                                   |          |                                         |          |
|                       |                                                    |           |                                                   |          |                                         |          |

<sup>a</sup> Total energies in atomic units and vibrational zero-point energies; VZPE, unscaled in kcal/mol. The number of imaginary frequencies, NIMAG, is given in parentheses after VZPE values.

#### **TABLE II: Energies of Diatomics**<sup>\*</sup>

|                       | PP           |      | PN           |      | NN           |      |
|-----------------------|--------------|------|--------------|------|--------------|------|
| method                | energy       | VZPE | energy       | VZPE | energy       | VZPE |
| RHF/6-31G*            | -681.424 535 | 1.30 | -395.125 750 | 2.27 | -108.943 949 | 3.94 |
| MP2/6-31G*            | -681.664 697 | 1.03 | -395.430 212 | 1.65 | -109.261 574 | 3.16 |
| CISD/6-31G*           | 681.655 619  | 1.20 | -395.402 035 | 2.05 | -109.239 421 | 3.57 |
| scc '                 | -681.688 903 |      | -395.436 932 |      | -109.266 334 |      |
| CISD(fc)/6-311G(df,p) | -681.710 088 |      | -395.460 901 |      | -109.301 997 |      |
| SCC                   | -681.740 518 |      | -395.493 344 |      | -109.329 317 |      |
| CISD/6-311G(df,p)     | -681.928 487 | 1.24 | -395.587 871 | 2.13 | -109.337 575 | 3.61 |
| SCC                   | -681.982 799 |      | -395.635 732 |      | -109.369 514 |      |

<sup>a</sup> Total energies in atomic units and VZPE unscaled in kcal/mol.

atoms and with additional sets of second-order f-type functions on all heavy atoms, 6-311G(df,p).<sup>20</sup> Vibrational frequencies were determined analytically at the RHF and MP2 levels and numerically at the CISD(full) levels. All ab initio calculations were carried out with Gaussian90 and earlier versions.<sup>21</sup>

#### **Results and Discussion**

Total energies and vibrational zero-point energies are summarized in Table I for ions 1–4 and in Table II for the neutral diatomics. Structures are given in Table III, vibrational frequencies and IR intensities are reported in Table IV, and proton affinities are listed in Table V.

**Diatomic Molecules.** The experimental bond lengths of N<sub>2</sub>, PN, and P<sub>2</sub> are 1.0975 Å, <sup>22</sup> 1.4910 Å, <sup>23</sup> and 1.893 Å, <sup>24</sup> respectively, and their experimental vibrational frequencies are 2359.6 cm<sup>-1</sup> ( ${}^{1}\Sigma_{g}^{+}$ ), <sup>25</sup> 1337.0 ( ${}^{1}\Sigma^{+}$ ), and 780.8 cm<sup>-1</sup> ( ${}^{1}\Sigma_{g}^{+}$ ), respectively. Prior studies<sup>26-28</sup> of P<sub>2</sub> were recently summarized by Schmidt and Gordon,<sup>29</sup> and earlier studies of PN also appeared in the literature.<sup>30,31</sup>

In Table VI, the scale factors are given that are necessary to match the computed bond lengths and frequencies with the experimental values. Generally, bond lengths are overestimated at the RHF level and they are underestimated by about the same amount at the MP2/6-31G<sup>+</sup> level. All of the CISD optimized structures are in excellent agreement with experimental data and an equally good agreement can be obtained with (the more efficient) MP2(full) optimizations with more flexible basis sets. We have used the latter finding in our studies of the P analogues of methyldiazonium ion.<sup>18</sup> The scale factors for the vibrational frequencies reflect the same consistent trends. The underestimation at the MP2 level does show a moderate reduction with the basis set (e.g., polar PN). In the case of P<sub>2</sub>, for example,  $\nu$ (RHF) remains 36.1 cm<sup>-1</sup> too high *after* the usual scaling (factor 0.9) while, on the contrary, the unscaled frequency computed at the best MP2 level is too low (without scaling) by about the same amount (44.4 cm<sup>-1</sup>).

Potential Energy Surface Analysis. Protonation of  $X_2$ . The ion  $HN_2^+$  was observed not only in interstellar space,<sup>32</sup> but also in the laboratory as an intermediate in the NH<sub>3</sub> diazotization by Olah et al.<sup>33</sup> Transition metal complexes containing protonated dinitrogen ligands also are thought to be important intermediates in the reduction of elemental nitrogen.<sup>34</sup> For 1 and 2, optimized structures for end-on and edge-on protonation were determined at the levels RHF, MP2(full), and CISD(full) with the 6-31G<sup>+</sup> basis set. At all levels, end-on protonation is favored for 1 in agreement with earlier studies of the linear<sup>35-37</sup> and the symmetrically bridged structures.<sup>38,39</sup> In contrast, edge-on protonation is favored for the P-analogue 2 (Figure 1). The studies by Busch et al.<sup>40</sup> and Nguyen et al.<sup>41</sup> also suggested that HP<sub>2</sub><sup>+</sup> shows a modest preference for the bridged structure.

The symmetrically bridged structure of 1 is the transitionstate structure for automerization. Model dependencies occur

# TABLE III: Structures of HN2+, HP2+, and HNP+

|                                   |            |        | 6-31G* |        | 6-311G   | (df,p) |
|-----------------------------------|------------|--------|--------|--------|----------|--------|
| molecule                          | parameters | RHF    | MP2    | CISD   | CISD(fc) | CISD   |
| X <sub>2</sub>                    | N-N        | 1.0784 | 1.1300 | 1.1057 | 1.0916   | 1.0898 |
| -                                 | P-P        | 1.8595 | 1.9324 | 1.8913 | 1.8795   | 1.8705 |
|                                   | N-P        | 1.4550 | 1.5357 | 1.4873 | 1.4767   | 1.4720 |
| $HN_2^+, C_{\infty v}$            | N-N        | 1.0709 | 1.1231 | 1.0984 | 1.0863   | 1.0841 |
|                                   | N2-H       | 1.0253 | 1.0421 | 1.0360 | 1.0316   | 1.0271 |
| $HN_{2}^{+}, C_{2v}$              | N-N        | 1.0991 | 1.1491 | 1.1274 |          |        |
|                                   | N1-H       | 1.2662 | 1.2890 | 1.2793 |          |        |
|                                   | N1-N2-H    | 64.28  | 63.53  | 63.86  |          |        |
|                                   | N2-H-N1    | 51.44  | 52.94  | 52.29  |          |        |
| $HP_2^+, C_{\infty \nu}$          | P-P        | 1.8351 | 1.9184 | 1.8730 |          |        |
|                                   | P2-H       | 1.3916 | 1.4142 | 1.4083 |          |        |
| $HP_{2}^{+}, C_{2v}$              | P-P        | 1.9053 | 1.9630 | 1.9357 | 1.9261   | 1.9173 |
|                                   | P1H        | 1.5832 | 1.5966 | 1.5947 | 1.5882   | 1.5826 |
|                                   | P1-P2-H    | 53.01  | 52.07  | 52.63  | 52.57    | 52.72  |
|                                   | P2-H-P1    | 73.98  | 75.87  | 74.73  | 74.66    | 74.57  |
| $HP_2^+, C_s$                     | P-P        |        | 1.9450 |        |          |        |
|                                   | P1-H       |        | 2.5443 |        |          |        |
|                                   | P2–H       |        | 1.4331 |        |          |        |
|                                   | P1-P2-H    |        | 96.56  |        |          |        |
| HNP <sup>+</sup> , $C_{\infty v}$ | N-P        | 1.4316 | 1.4882 | 1.4593 | 1.4493   | 1.4455 |
|                                   | N-H        | 1.0021 | 1.0230 | 1.0148 | 1.0067   | 1.0084 |
| HPN <sup>+</sup> , $C_s$          | N-P        |        | 1.5022 |        |          |        |
|                                   | P–H        |        | 1.4515 |        |          |        |
|                                   | N-P-H      |        | 98.64  |        |          |        |
| HPN <sup>+</sup> , $C_{\infty v}$ | N–P        | 1.4463 | 1.5663 | 1.4867 |          |        |
| , <b>.</b>                        | P–H        | 1.4036 | 1.4329 | 1.4214 |          |        |

<sup>a</sup> In angstroms and degrees.

TABLE IV: Vibrational Frequencies and Infrared Intensities

|                  | RHF/6-3                  | 1 <b>G</b> * | MP2(full)/6              | 5-31G* | CISD(full)/              | 6-31G* | CISD(full)/6-3           | 11G(df,p) |
|------------------|--------------------------|--------------|--------------------------|--------|--------------------------|--------|--------------------------|-----------|
|                  | ν                        | int          | ν                        | int    |                          | int    | ν                        | int       |
| NN               | 2758.0 (σ <sub>g</sub> ) |              | 2179.6 (σ <sub>g</sub> ) |        | 2497.8 (σ <sub>g</sub> ) |        | 2528.2 (σ <sub>8</sub> ) |           |
| PP               | 907.8 (σ <sub>g</sub> )  |              | 717.0 (σ <sub>g</sub> )  |        | 836.1 (σ <sub>g</sub> )  |        | 868.8 ( <i>a</i> )       |           |
| NP               | 1588.8 (σ)               | 0.2          | 1157.3 (σ)               | 7.8    | 1436.9 (o)               | 0.0    | 1488.2 (σ)               | 1.3       |
| HNN <sup>+</sup> | <b>806.1</b> (π)         | 169.7        | 694.6 (π)                | 157.6  | 732.5 ( <del>π</del> )   | 161.4  | 776.8 ( <b>π</b> )       | 167.2     |
| $C_{\infty v}$   | 2674.9 (σ)               | 12.2         | 2139.4 (σ)               | 4.2    | 2440.6 (σ)               | 4.7    | 2467.7 (σ)               | 4.0       |
|                  | 3639.0 (σ)               | 750.0        | 3402.7 (σ)               | 632.1  | 3501.5 (σ)               | 661.0  | 3544.6 (σ)               | 670.4     |
| HNN <sup>+</sup> | -837.0 (b <sub>2</sub> ) | 12.9         | 660.4 (b <sub>2</sub> )  | 339.4  | -878.9 (b <sub>2</sub> ) | 25.7   | • •                      |           |
| $C_{2v}$         | 2362.4 (a <sub>1</sub> ) | 636.7        | 2027.8 (a <sub>1</sub> ) | 124.1  | 2246.3 (a <sub>1</sub> ) | 445.0  |                          |           |
|                  | 2588.4 (a1)              | 0.0          | 2227.2 (a <sub>1</sub> ) | 489.4  | 2366.8 (a <sub>1</sub> ) | 127.1  |                          |           |
| HPP+             | $-203.6(\pi)$            | 91.1         | <b>96.3</b> (π)          | 63.7   | $-200.8(\pi)$            | 77.9   |                          |           |
| $C_{-v}$         | 915.3 (σ)                | 13.3         | 702.8 (σ)                | 5.2    | 831.7 (σ)                | 8.2    |                          |           |
|                  | 2692.3 (σ)               | 163.2        | 2512.4 (σ)               | 117.3  | 2562.6 (σ)               | 116.8  |                          |           |
| HPP+             | 849.6 (a1)               | 3.0          | 703.4 (a <sub>1</sub> )  | 0.8    | 781.9 (a <sub>1</sub> )  | 1.9    | 813.3 (a <sub>1</sub> )  | 2.0       |
| $C_{2v}$         | 914.4 (b <sub>2</sub> )  | 70.6         | 1255.7 (b <sub>2</sub> ) | 167.3  | 1044.5 (b <sub>2</sub> ) | 95.2   | 1152.6 (b <sub>2</sub> ) | 80.1      |
|                  | 1977.3 (a <sub>1</sub> ) | 1.9          | 1869.7 (a <sub>1</sub> ) | 14.0   | 1893.0 (a <sub>1</sub> ) | 3.7    | 1931.6 (a)               | 23.6      |
| HPP+             | • • •                    |              | -501.1 (a')              | 139.0  |                          |        |                          |           |
| $C_s$            |                          |              | 726.1 (a')               | 30.6   |                          |        |                          |           |
|                  |                          |              | 2372.6 (a')              | 60.9   |                          |        |                          |           |
| HNP <sup>+</sup> | 792.2 (π)                | 230.1        | 706.0 (π)                | 193.9  | 740.9 (π)                | 204.2  | 743.0 (π)                | 191.1     |
| $C_{\infty v}$   | 1624.0 (σ)               | 15.6         | 1307.1 (σ)               | 3.4    | 1489.1 (σ)               | 2.8    | 1531.1 (σ)               | 3.4       |
| -                | 3871.3 (o)               | 516.4        | 3957.5 (σ)               | 439.4  | 3708.9 (σ)               | 435.9  | 3738.8 (o)               | 467.6     |
| HPN+             |                          |              | -767.7 (a')              | 249.7  |                          |        |                          |           |
| С,               |                          |              | 1359.8 (a')              | 100.3  |                          |        |                          |           |
| -                |                          |              | 2224.4 (a')              | 340.3  |                          |        |                          |           |
| HNP <sup>+</sup> | $-220.8(\pi)$            | 69.5         | <b>492.1</b> (π)         | 8.6    | $-167.6(\pi)$            | 62.7   |                          |           |
| C.v              | 1585.0 (σ)               | 9.9          | 987.3 (ơ)                | 78.0   | 1406.3 (σ)               | 19.0   |                          |           |
| -                | 2602.5 (σ)               | 292.9        | 2385.2 (σ)               | 132.8  | 2471.2 (σ)               | 190.1  |                          |           |

<sup>a</sup> Frequencies in 1/cm, IR intensities in kilometers per mol, km/mol.

regarding the character of the linear structure of 2 and we will examine the shape of the dashed curve shown for 2 in Figure 1 in more detail below. At the RHF and CISD levels, linear 2 is a transition-state structure. At the RHF level, we established that linear 2 is in fact the transition state for the "isomerization" of bridged 2 and first it seemed reasonable to assume this to be also true at the CISD level. At the MP2 level, linear 2 is predicted to be a local minimum separated from the symmetrically bridged structure by a  $C_r$  symmetric transition-state structure which is significantly higher in energy than linear 2 (10.5 kcal/mol). Protonation of PN. N protonation of PN resulting in linear 3 is greatly favored at all levels. Its isomer 4 is predicted to be a transition-state structure at the RHF and CISD levels. The MP2 prediction again deviates in that linear 4 is a local minimum at this level. The  $C_s$  symmetric transition state structure separating 3 and 4 on the MP2 potential energy surface was located and it is 39.7 kcal/mol less stable than 4. At our highest level, CISD(full,ssc)/6-31G\* and including vibrational zero-point energies calculated at this level, N protonation is preferred over P protonation by 86.7 kcal/mol. Maclagan<sup>42</sup> recently reported

# TABLE V: Proton Affinities\*-c

| Glaser | et | al. |
|--------|----|-----|
|--------|----|-----|

|                       | (      |        | C              | lu     | prefei | rence <sup>b</sup> |
|-----------------------|--------|--------|----------------|--------|--------|--------------------|
| method                | PE     | ΔVZPE  | PE             | ΔVAPE  | ΔΡΕ    | ΔΡΑς               |
|                       |        |        | N <sub>2</sub> |        |        |                    |
| RHF/6-31G*            | 117.96 | -7.39  | 67.88          | -3.14  | 50.08  | 45.84              |
| MP2/6-31G*            | 119.60 | -6.75  | 65.09          | -2.92  | 54.51  | 50.68              |
| CISD/6-31G*           | 120.72 | -7.02  | 68.40          | -3.02  | 52.32  | 48.32              |
| SCC                   | 121.60 |        | 68.95          |        | 52.65  | 48.65              |
| CISD(fc)/6-311G(df,p) | 125.22 |        |                |        |        |                    |
| SCC                   | 126.01 |        |                |        |        |                    |
| CISD/6-311G(df.p)     | 122.85 | -7.21  |                |        |        |                    |
| SCC                   | 123.51 |        |                |        |        |                    |
|                       |        |        | •              |        |        |                    |
|                       | 140.44 | 2.07   | P <sub>2</sub> | 4.05   | 11.00  | 11.71              |
| RHF/6-31G*            | 142.64 | -3.86  | 154.57         | -4.05  | -11.92 | -11.73             |
| MP2/6-31G*            | 144.62 | -3.84  | 147.40         | -4.44  | -2.79  | -2.19              |
| CISD//6-31G*          | 146.21 | -3.65  | 154.88         | -4.12  | -8.67  | -8.20              |
| SCC                   | 147.96 |        | 154.46         |        | -6.50  | -6.03              |
| CISD(fc)/6-311G(df,p) |        |        | 165.05         |        |        |                    |
| SCC                   |        |        | 164.90         |        |        |                    |
| CISD/6-311G(df,p)     |        |        | 165.47         | -4.33  |        |                    |
| SCC                   |        |        | 165.53         |        |        |                    |
|                       |        |        | NP             |        |        |                    |
|                       | N-Prot | N-Prot | P-Prot         | P-Prot |        |                    |
| RHF/6-31G*            | 201.01 | -7.85  | 92.43          | -3.71  | 108.58 | 104.44             |
| MP2/6-31G*            | 188.90 | -7.38  | 107.18         | -4.58  | 81.72  | 78.92              |
| CISD/6-31G*           | 197.74 | -7.50  | 100.43         | -3.49  | 97.30  | 93.29              |
| SCC                   | 195.53 |        | 104.83         | -      | 90.70  | 86.89              |
| CISD(fc)/6-311G(df.p) | 200.40 |        |                |        |        |                    |
| SCC                   | 198.13 |        |                |        |        |                    |
| CISD/6-311G(df.p)     | 204.34 | -7.54  |                |        |        |                    |
| SCC                   | 201 77 |        |                |        |        |                    |

<sup>a</sup> Values in kcal/mol. <sup>b</sup> Preference energies are given for end-on protonation for X<sub>2</sub> and for N protonation of NP. <sup>c</sup>  $\Delta$ PA = (PE +  $\Delta$ VZPE)<sub>linear</sub> - (PE +  $\Delta$ VZPE)<sub>bridged</sub> for end-on protonation for X<sub>2</sub> and  $\Delta$ PA = (PE +  $\Delta$ VZPE)<sub>N-Prot</sub> - (PE +  $\Delta$ VZPE)<sub>P-Prot</sub>.

TABLE VI: Scale Factors for N<sub>2</sub>, PN, and P<sub>2</sub>

|                     | bo   | ond leng | th   | frequency |      |      |
|---------------------|------|----------|------|-----------|------|------|
| method              | NN   | PN       | PP   | NN        | PN   | PP   |
| RHF/6-31G*          | 1.02 | 1.02     | 1.02 | 0.86      | 0.84 | 0.86 |
| MP2/6-31G*          | 0.97 | 0.97     | 0.98 | 1.08      | 1.16 | 1.09 |
| MP2/6-311G*         | 0.98 | 0.98     | 0.98 | 1.08      | 1.13 | 1.09 |
| MP2/6-311G(df)      | 0.99 | 0.98     | 0.99 | 1.07      | 1.11 | 1.06 |
| CISD/6-31G*         | 0.99 | 1.00     | 1.00 | 0.94      | 0.93 | 0.93 |
| CISD(fc)/6-311G(df) | 1.01 | 1.01     | 1.01 |           |      |      |
| CISD/6-311G(df)     | 1.01 | 1.01     | 1.01 | 0.93      | 0.90 | 0.90 |

<sup>a</sup> Scale factor = experimental value/computed value.



Figure 1. Schematic drawings of the potential energy surfaces of protonated  $N_2$ , PN, and  $P_2$ . Energy profiles are drawn to scale vertically and the energies given are those determined at the CISD(full)/6-31G\* level (without VZPEs). Values given in italics were determined at the CISD(full)/6-311G(df,p) level.

proton affinities of phosphorus compounds including PN. (HNP)+ was found to be preferred over HPN<sup>+</sup> by 91.7 kcal/mol at MP4 $(sdq)/6-31G^*//RHF/6-31G^*$ . This is also in agreement with the earlier MRD-CI study with double- $\zeta$  plus polarization basis sets by Buenker et al.<sup>43</sup> that showed HNP<sup>+</sup> to be favored over HPN<sup>+</sup> by 87.4 kcal/mol and that the latter is a transition state structure.

The most stable structures resulting from protonation of N<sub>2</sub>, PN, and P<sub>2</sub>, respectively, linear 1,  $C_{2\nu}$  2, and linear 3 were optimized also at CISD(full)/6-311G(df,p) and confirmed to be minima at that level (Table IV). Before we proceed to discussing relevant properties of the stationary structures obtained, we address some pertinent aspects of model dependencies.

Model Dependencies. At the MP2(full)/6-31G\* level, the stationary structures of linear 2 and 4 are predicted to be local minima rather than transition state structures. These results suggest that P  $\sigma$  lone pair dative bonding to electrophiles is artificially overestimated at the MP2/6-31G\* level. This artifact may formally be viewed either as originating from an artificial stabilization of the linear structures or as an artificial destabilization of the structures in their vicinities on the potential energy surfaces. Considering the relatively close agreement of the relative energies of end-on and edge-on coordinated structures (Table V), the latter seems to be more important; that is, the activation associated with the change from end-on to edge-on coordination is artificially enhanced. We will present compelling evidence for this conclusion (a) by showing that model dependencies on the linear structures are modest and (b) by exploration of the potential energy surface at the CISD(full)/6-31G\* level along the H-P-P path.

Basis Set Dependencies in the MP2 Calculations of  $H - P^+ = X$ . We studied linear 2 and 4 also with valence triple-5 basis sets with different choices of polarization functions to examine whether these deficiencies are basis set dependent. Both molecules were optimized and characterized at the MP2(full) level with the 6-311G(d,p), 6-311G(dd,p), and the 6-311G(df,p) basis sets and the results are summarized in Table VII. Basis set effects on

TABLE VII: MP2(full) Optimized Structures of Linear HPP+ and HPN+

| basis set    | energy       | VZPE | H–P              | P–X    | $\nu(\pi)$ | ν(σ)   | ν(σ)   |
|--------------|--------------|------|------------------|--------|------------|--------|--------|
|              |              |      | HPP <sup>+</sup> |        |            |        |        |
| 6-311G(d.p)  | -682.174 436 | 5.03 | 1.4045           | 1.9084 | 146.7      | 706.6  | 2515.1 |
| 6-311G(dd.p) | -682.219 592 | 5.01 | 1.4062           | 1.9193 | 167.5      | 692.6  | 2474.3 |
| 6-311G(df,p) | -682.211 516 | 4.61 | 1.4083           | 1.9037 | -38.3      | 724.3  | 2502.1 |
|              |              |      | HPN+             |        |            |        |        |
| 6-311G(d,p)  | -395.780 763 | 6.21 | 1.4227           | 1.5570 | 474.2      | 1004.9 | 2389.6 |
| 6-311G(dd,p) | -395.299 236 | 6.08 | 1.4281           | 1.5565 | 463.9      | 997.4  | 2328.0 |
| 6-311G(df,p) | -395.814 828 | 6.06 | 1.4306           | 1.5509 | 429.0      | 1031.0 | 2351.7 |

structures are found to be modest. All bonds are slightly shortened and the agreement with the CISD optimized structures is improved. The variations in the low-energy vibrational  $\pi$ -symmetric modes are most diagnostic. For linear 2, optimization of the d-function exponent through linear combination of two sets of d-type polarization functions increases  $\nu(\pi)$  but this mode becomes imaginary when sets of first- and second-order polarization functions are used. For linear 4, improvements in the basis set results in the same trends but the activation barrier persists. Interestingly, the small contributions of the f-type functions suffices to change the character of linear 2 from a minimum to a transition state. Could this small change in the theoretical model remove the barrier for end-on to edge-on isomerization and cause linear 2 itself to become the transitionstate structure? We thus determined the potential energy surface of 2 as a function of the H-P-P angle to clarify this question.

CISD Potential Energy Surface Scan for  $H - P^+ \equiv P$ . The results of our exploration of the potential energy surface of 2 at the CISD(full)/6-31G\* level are summarized in Table VIII and graphically illustrated in Figure 2. The potential energy scan at the CISD level (solid circles in Figure 2), unexpectedly revealed two more stationary structures in addition to the symmetrically bridged and linear structures and both of these were optimized and characterized by calculation of their vibrational frequencies. A local minimum occurs at an H-P-P angle of 147.1° and it is only slightly more stable than the transition state structure linear 2; the activation barrier is 0.39 kcal/mol at the level of optimization and 0.64 kcal/mol with inclusion of corrections for size consistency (+0.52 kcal/mol) and vibrational zero-point energies (-0.27 kcal/ mol). At an H-P-P angle of 108.2°, a transition-state structure occurs for an asymmetrically bridged structure of 2. This transition-state structure is 0.67 kcal/mol less stable than the adjacent local minimum at the CISD/6-31G\* level and with inclusion of corrections for size-consistency (+0.01 kcal/mol) and vibrational zero-point energies (-0.52 kcal/mol) the barrier becomes 0.16 kcal/mol. Thus, the essential features of the potential energy surface of  $HP_2^+$  are (a) that the symmetrically bridged structure is the most stable one, (b) that displacements of the hydrogen from the symmetrically bridging position lead to a sharp increase in energy, and that (c) the variation in energy in the entire region of the potential energy surface where  $90^{\circ} <$  $H-P-P < 270^{\circ}$  is within 1 kcal/mol.

In Figure 2, also shown are the potential energy curves calculated at the RHF, MP2, and MP3 levels with the CISD optimized structures which provide excellent approximations to the true potential energy curves at those levels. The RHF and MP2 curves both differ most dramatically in qualitative fashions from the CISD results. The RHF energy rises monotonically along the path from bridged 2 to linear 2. Except for a small shoulder around  $H-P-P = 80^\circ$ , the transition from edge-on to end-on coordination occurs rather steady and without any asymmetric stationary structures along the path. On the other hand, the MP2 energies suggest a much more pronounced barrier for the transition between  $\pi$ -type protonation and  $\eta^1$  coordination just as observed on the  $MP2/6-31G^*$  surface itself (vide supra). The maximum of the MP2 energy occurs at  $H-P-P = 95^{\circ}$  and would indicate a barrier of about 13 kcal/mol for the transition from bridged 2 to linear 2. Note that the  $MP2/6-31G^*$  optimized structures and energies agree very closely with these data. It is only with third-order perturbational theory that the characteristic features of the potential energy surface are reproduced (Figure 2) although the barrier between the symmetrically and asymmetrically bridged structures is somewhat overestimated.

Busch et al.<sup>40</sup> previously studied the potential energy surface of 2 as a function of the H–P–P angle at the RHF level. The CEPA-1 method was employed together with the RHF structures to estimate electron correlation effects. This correlation treatment leads to a lowering of the energy but not to a minimum in that area of the potential energy surface where our CISD(full)/6-31G\* study indicates the asymmetrically bridged minimum.<sup>44</sup> Moreover, the CEPA-1/RHF calculations fail to reproduce the flatness in extended region with 90° < H–P–P < 270°.

The flatness of the potential energy surface in the region around linear 2 provides a simple explanation for the model dependency of the character of linear 2. While the potential energy surface in that vicinity is predicted to be rather flat at all levels of theory, its gradient does depend on the method's ability to describe that region of the potential energy surface in which the hydrogen changes from  $\pi$ - to  $\sigma$ -coordination.

The CISD/6-31G<sup>\*</sup> optimized P-P and P-H bond lengths in symmetrically bridged 2 are 1.9357 and 1.5947 Å, respectively, and they both are shorter in linear 2 where d(P-P) = 1.8730 Å and d(P-H) = 1.4083 Å. See Table VIII for their variations along the path. The P-P bond varies comparatively little (<0.09 Å or 5%) and it goes through a maximum at an H-P-P angle of about 90°. The P-H bond shortens significantly more in going from bridged 2 (1.5947 Å) to linear 2 (1.4083 Å) and the change is essentially monotonous (except for a small bump around H-P-P = 130°).

Geometries. Lacking the possibility for direct comparison to experimental data, we elucidate model dependencies on structures by comparison to the neutral diatomics for which experimental data exist (vide supra). In Figure 3, the X-Y bond lengths are shown as a function of the theoretical level. Data indicated by an  $\times$  refer to the neutral diatomics and the interpolation lines terminate at the experimental values (level 6). The X-Y bond lengths calculated for linear 1 and 3 (unfilled circles) and bridged 2 (triangles) show the same pattern over the five levels as the diatomic molecules themselves. The nonconnected unfilled (filled) circles in Figure 3 refer to linear 2 (4). Because of these great similarities, it appears reasonable to assume that the true X-Y bond lengths in the protonated systems are well bracketed by the RHF and MP2 derived bond lengths and somewhat longer than the bond distances predicted by our highest CISD level. Moreover, the spread in the structural parameters is of a comparable magnitude as for the diatomics and the scale factor discussed there can be used.45

The CISD(full)/ $6-31G^*$  optimized structures are illustrated in Figure 4 with a common scale. End-on protonation *shortens* the X-Y bonds in all cases. The shortening is negligible for linear 1 and 4, modest for linear 2 (0.018 Å), and most pronounced for linear 3 (0.028 Å).<sup>46</sup> Edge-on protonation, on the other hand, *lengthens* the basal X-X bonds, and the effect is more pronounced (0.022 Å for 1 and 0.044 Å for 2). All of the X-Y bonds in the protonated systems and in the diatomics differ less than 2.5%, almost a magnitude less than the changes associated with bond

| 90°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°         100°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1007.02                                |                           |              | <br>         |              |              |              |              |              |              |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 9566         1.9499         1.9392         1.9360         1.9056         1.8874         1.8850         1.8730           4339         1.4237         1.4182         1.4170         1.4192         1.4073         1.4068         1.4083           4339         1.4237         1.4182         1.4170         1.4192         1.4073         1.4068         1.4083           581.661 985         -681.665 68         -681.659 103         -681.658 724         -681.655 154         681.651 905         -681.650 534           581.878 879         -681.878 531         -681.687 100         -681.892 230         -681.892 724         -681.893 966           581.903 357         -681.902 704         -681.905 893         -681.905 694         -681.907 780         -681.907 780         -681.907 780         -681.907 780         -681.907 780         -681.907 780         -681.907 780         -681.907 780         -681.988 626           581.924 077         -681.925 700         -681.926 347         -681.926 141         -681.926 009         -681.926 609         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689         -681.926 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.63** 70* 80*                        | 70° 80°                   | 808          | 90°          | 100          | 108.19°6     | 110°         | 130°         | 147.14°4     | 150°         | 180°         |
| 4339       1.4237       1.4182       1.4170       1.4192       1.4073       1.4068       1.4083         581.661 985       -681.665 666       -681.655 103       -681.655 724       -681.655 153       -681.655 150       -681.650 534         581.661 985       -681.666 658       -681.655 103       -681.655 124       -681.651 905       -681.650 534         581.878 879       -681.875 31       -681.880 116       -681.887 100       -681.892 230       -681.893 966         581.903 357       -681.902 529       -681.902 704       -681.902 839       -681.907 780       -681.907 780         581.903 357       -681.988 133       -681.888 190       -681.888 836       -681.907 780       -681.907 780       -681.907 780         581.903 357       -681.988 133       -681.888 190       -681.888 836       -681.989 246       -681.988 626         581.924 077       -681.924 421       -681.925 000       -681.926 347       -681.926 109       -681.924 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9357 1.9400 1.9528                   | 1.9400 1.9528             | 1.9528       | 1.9566       | 1.9499       | 1.9392       | 1.9360       | 1.9056       | 1.8874       | 1.8850       | 1.8730       |
| 881.661 985 -681.666 658 -681.659 103 -681.658 724 -681.654 538 -681.652 161 -681.651 905 -681.650 534 681.650 534 581.650 534 581.650 534 581.650 534 581.650 534 581.650 534 581.650 534 581.650 534 581.650 541 581.893 966 581.870 581.893 966 581.870 581.893 966 581.903 357 -681.902 529 -681.902 704 -681.902 839 -681.905 594 -681.907 780 -681.907 780 -681.907 780 581.907 780 581.907 742 581.907 742 581.907 780 581.907 780 581.907 780 581.907 780 581.907 780 581.907 780 581.907 742 581.907 742 581.907 742 581.907 780 581.907 742 581.907 742 581.907 742 581.907 740 581.907 742 581.907 742 581.907 742 581.907 780 581.907 742 581.907 740 581.907 742 581.907 740 581.907 742 581.907 742 581.907 740 581.907 740 581.907 742 581.907 742 581.907 742 581.907 740 581.907 742 581.907 740 581.907 742 581.907 740 581.907 580 584 586 546 581.908 546 581.907 780 581 590 581.907 740 581.907 742 581.907 740 581.925 500 581.926 347 581.926 11 581.926 009 581.924 589 581 581.924 077 580 581.924 681.925 500 581.925 200 581.926 347 581.926 11 581.926 009 581.924 589 581 591.924 681.924 681.924 589 581 591 591.924 589 581 591 591.924 589 580 581 591 591.925 500 581.925 500 581.926 347 581.926 11 581.926 009 581.924 589 581 591 581 591 581 591 591 591 591 591 591 591 591 591 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5947 1.4791 1.4514                   | 1.4791 1.4514             | 1.4514       | 1.4339       | 1.4237       | 1.4182       | 1.4170       | 1.4192       | 1.4073       | 1.4068       | 1.4083       |
| 881.878 879 - 681.878 531 - 681.879 692 - 681.880 116 - 681.887 100 - 681.892 230 - 681.892 724 - 681.893 966 581.903 357 - 681.902 529 - 681.902 704 - 681.902 839 - 681.905 694 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.907 780 - 681.908 626 - 681.908 - 681.908 626 - 681.908 626 - 681.908 626 - 681.908 626 - 681.908 620 - 681.908 626 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.908 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928 620 - 681.928  | -681.670 173681.664 801681.662 948     | 681.664 801681.662 948    | -681.662 948 | -681.661 985 | -681.660 658 | -681.659 103 | -681.658 724 | -681.654 538 | -681.652 161 | -681.651 905 | -681.650 534 |
| 881.903 357 -681.902 529 -681.902 704 -681.902 839 -681.905 694 -681.907 656 -681.907 780 -681.907 432 581.907 432 581.907 432 581.907 432 581 588 526 -681.888 139 -681.888 139 -681.888 139 -681.888 139 -681.888 130 -681.888 130 -681.888 526 -681.889 524 -681.924 677 -681.924 677 -681.925 061 -681.925 200 -681.925 200 -681.926 681.926 681.924 681 -681.926 681 -681.925 200 -681.925 200 -681.926 536 -681.926 526 -681.925 520 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.926 530 -681.92 | -681.899 193 -681.887 185 -681.881 506 | -681.887 185 -681.881 506 | -681.881 506 | -681.878 879 | -681.878 531 | -681.879 692 | -681.880 116 | -681.887 100 | -681.892 230 | -681.892 724 | -681.893 966 |
| 881.889 017 -681.888 334 -681.888 183 -681.888 190 -681.888 836 -681.889 254 -681.889 246 -681.888 226 526 581.924 077 -681.924 421 -681.925 061 -681.925 200 -681.926 337 -681.926 141 -681.926 009 -681.924 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -681.920 294 -681.910 304 -681.905 664 | -681.910 304681.905 664   | -681.905 664 | -681.903 357 | -681.902 529 | -681.902 704 | -681.902 839 | -681.905 694 | -681.907 656 | -681.907 780 | -681.907 432 |
| 81.924 077 -681.924 421 -681.925 061 -681.925 200 -681.926 347 -681.926 141 -681.926 009 -681.924 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -681.902 437 -681.894 152 -681.890 639 | -681.894 152 -681.890 639 | -681.890 639 | 681.889 017  | -681.888 334 | -681.888 183 | -681.888 190 | -681.888 836 | -681.889 254 | -681.889 246 | -681.888 626 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -681.935 054 -681.927 502 -681.924 790 | -681.927 502 -681.924 790 | -681.924 790 | -681.924 077 | -681.924 421 | -681.925 061 | -681.925 200 | -681.926 347 | -681.926 141 | -681.926 009 | -681.924 689 |

TABLE VIII: CISD Optimized Structures of HPP<sup>+</sup> as a Function of the H-P-P Angle<sup>4</sup>

<sup>a</sup> All electrons included in CI. Basis set 6-31G<sup>4</sup>. <sup>b</sup> First and last data columns contain the parameters for C<sub>20</sub> and C<sub>20</sub> and C<sub>20</sub> attructures, respectively. <sup>c</sup> Parameters for the transition state involving asymmetric bridging. Vibrational frequencies: -231.4 (a'), 737.5 (a'), 2480.4 (a'). Vibrational zero-point energy: 4.60 kcal/mol. <sup>d</sup> Parameters for the local minimum involving asymmetric bridging. Vibrational frequencies: 199.8 (a'), 817.9 (a'), and 2562.3 (a'). Vibrational zero-point energy: 5.12 kcal/mol.



Figure 2. The potential energy surface of  $HP_2^+$  as a function of the H-P-P angle is shown. All energy values are based on the CISD(full)/ 6-31G\* optimized structures for a given angle.



Figure 3. Effects of the theoretical model on geometries. Levels 1-5 represent RHF/6-31G<sup>\*</sup>, MP2(full)/6-31G<sup>\*</sup>, CISD(full)/6-31G<sup>\*</sup>, CISD(fc)/6-311G(df,p), and CISD(full)/6-311G(df,p), respectively. Entries for level 6 are the experimental data.

order reduction of one. The P-N bond in 3 (1.459) is 0.028 Å shorter than the one in 4 (1.487 Å). Nonetheless, the latter remains much shorter than the P-N bond length of 1.57 Å in PN<sup>+</sup> in its  ${}^{2}\Sigma^{+}$  state ( $7\sigma e^{-}$  loss from PN) that was determined via Penning ionization.<sup>47</sup> Note that the N-P distance in 4 is greatly overestimated at the MP2/6-31G\* level (1.577 Å) suggesting a much greater similarity with PN<sup>+</sup>. The experimental bond lengths<sup>48</sup> of the  ${}^{2}\Sigma^{+}$  (ground) states of N<sub>2</sub><sup>+</sup> (1.116 Å) and P<sub>2</sub><sup>+</sup> (1.893 Å) are very close to the values in the neutral molecules and, thus, they may not be taken as an indicator of the charge distribution in 1 and 2. The H-N (H-P) bond length in linear



Figure 4. Drawings (to scale) of the CISD(full)/6-31G\* optimized structures. Values in italics were determined at the CISD(full)/6-311G-(df,p) level for the most stable structures.



Figure 5. Effects of the theoretical model on vibrational frequencies. Levels 1-4 represent RHF/6-31G\*, MP2(full)/6-31G\*, CISD(full)/ 6-31G\*, and CISD(full)/6-311G(df,p), respectively. Entries for level 5 are the experimental data for the neutral molecules.

1 (2) is 0.021 (0.013) Å shorter than in 3 (4) reflecting the higher basicity of N (P) in 1 (2) compared to 3 (4). H-X bonds in the bridged structures are longer compared to the linear structures, and more so for the 1 (0.243 Å) than for 2 (0.186 Å).

Spectroscopic Properties. Harmonic vibrational frequencies, their symmetries, and infrared intensities are given in Table IV. In Figure 5 the dependencies are graphically illustrated of the computed vibrational frequencies on the theoretical model. Unfilled circles, squares, and triangles refer to the stretching frequencies of  $N_2$ , NP, and  $P_2$ , and the corresponding filled marks indicate the lower two frequencies in linear 149 and 3 and in bridged 2, respectively. It becomes immediately obvious from this figure that the trends discussed for the frequency scale factors of the neutral diatomics carry over to the protonated systems. The scale factors given in Table VI for the neutral molecules also might be used for the protonated systems. The model dependency of the  $b_2$  mode of bridged 2 stands out in that the frequency calculated at the MP2 level exceeds both the RHF and CISD values. This mode corresponds to a proton movement relative to the PP axis in a parallel fashion, and its overestimated value is a consequence of the discussed deficiencies of the potential energy surface at this level.

With the CISD(full)/6-311G(df,p) data and the scale factors in Table VI, we predict the vibrational frequencies (1/cm) of the most stable protonated systems to be 725  $(\pi, \nu_2)$ , 2303  $(\sigma, \nu_3)$ , and 3308  $(\sigma, \nu_1)$  for linear 1, 731 (a<sub>1</sub>), 1036 (b<sub>2</sub>), 1736 (a<sub>1</sub>) for bridged 2, and 668  $(\pi)$ , 1376  $(\sigma)$ , and 3359  $(\sigma)$  for 3, respectively. The predicted frequencies for linear 1 can be compared to experimental data available from infrared laser spectroscopy. Gudemann et al.<sup>50</sup> measured a frequency  $\nu_1 = 3234$  cm<sup>-1</sup> and Foster and McKellar<sup>51</sup> reported  $\nu_3 = 2258$  cm<sup>-1</sup>. Our best estimates for  $\nu_1$  and  $\nu_3$  thus remain slightly too high by 74 and 45 cm<sup>-1</sup>, respectively, but the agreement is *much* better than that obtained with standard scaling methods.<sup>52</sup>

**Proton Affinities.** In Table V, the protonation energies PE are given for 1-4. The energies refer to the motionless state at 0 K. Proton affinities can well be approximated with the protonation energies if the changes in vibrational zero-point energies are taken into account,  $PA = PE + \Delta VZPE$ . The  $\Delta VZPE$  values in Table V are given unscaled. The errors associated with the  $\Delta VZPE$ values may be as large as 10% (vide supra), but they remain on the order of only 0.3-0.8 kcal/mol, and these errors essentially cancel in the determination of the relative proton affinities of isomeric structures (last column Table V).

Relative Proton Affinities. At the CISD(full)/6-31G\* level and including corrections for vibrational zero-point energies, preference energies of 48.7 and 6.0 kcal/mol are found for linear 1 and bridged 2, respectively. The preferences energies for the linear structures,  $\Delta PA$ , are larger than the RHF values and smaller than the MP2 values, that is, electron correlation tends to favor linear structures but the  $\Delta PA$  values suggest that this trend is overestimated at the second-order perturbation level. Trends in the PE values provide useful insights. The PE values for linear 1 and 2 all increase monotonically with improvement in the theoretical model. The RHF and CISD PE values of bridged 1 and 2 are within less than 0.5 kcal/mol, whereas the MP2 derived PE values are significantly less and in particular for 2. The origin for the overestimated preferences for the linear structures at the MP2 level is thus not an overestimation of the correlation effects on the linear structures but rather the inadequacy of the correlation corrections to accurately approximate the electron correlation effects on the bridged species. The entries  $\Delta PE$  and  $\Delta PA$  for NP in Table V refer to the preference for N protonation over P protonation. At the CISD level, the N-protonation preference is 86.7 kcal/mol. Second-order corrections significantly improve the  $\Delta PA$  value;  $\Delta PA(RHF)$  is 17.8 kcal/mol higher while  $\Delta PA$ -(MP2) is lower by 7.8 kcal/mol.

End-versus Edge-On Preference and X-X Bond Length. Ions 1 and 2 may be compared regarding their preferences for end-on or edge-on protonation and regarding the magnitudes of the interactions. The homologues 1 and 2 differ characteristically with regard to the former criterium. We optimized structures of linear and bridged 1 with fixed N-N bond distances and their energies relative to the respective stationary structures are plotted versus d(N-N) in Figure 6. An increase of d(N-N) does have a significantly larger effect on the linear structure. For the range examined, the energy increase of the linear over the bridged structure,  $\Delta \Delta E$ , follows a quadratic function and  $\Delta \Delta E$  reaches a value<sup>53</sup> of about 50 kcal/mol for d(N-N) = 1.6 Å. Note that the calculated preference for linear 1 is of about equal magnitude. On the other hand, the shorter P-P bond length results in higher destabilizations of the bridged compared to the linear structure. The structures with d(P-P) = 1.5 Å, for example, differ by about 40 kcal/mol with a preference for the *linear* structure.<sup>54</sup> In both cases, the bridged structure becomes destabilized relative to the linear structure with the same bond length as the X-X bond length is shortened. This finding can be rationalized with qualitative MO theory. The approach of an electrophile toward



Figure 6. Bridged structures become destabilized relative to the linear structure with the same bond length as the X-X bond length is shortened. Relative energies of linear (circles) and bridged (triangles) protonated  $N_2$  with increasing N-N distances (top) and of protonated  $P_2$  with decreasing P-P distance.

the  $\pi$  system polarizes the  $\pi$  system to increase the bonding of the electrophile but it also leads to increased electron-electron repulsion in the  $\pi$  system. A longer X-X bond will allow the first effect to dominate the second whereas the second effect will dominate for shorter bonds. To a first approximation, we may disregard the small differences in the X-X bond lengths of the linear and bridged structures in 1 and 2, and conclude that the preference for the bridged structures is closely related to the X-X bond length<sup>55</sup> and the structural preferences of the protonated systems thus reflect the same factors that also determine the X-X bond lengths in the neutral diatomics.

Absolute Proton Affinities. Accurate determinations of proton affinities are difficult<sup>56</sup> as the combination of a proton with a nucleophile is the worse case scenario for basis set superposition errors.57 The best remedy against such errors is the enlargement of the basis set. We determined the proton affinities of  $N_2$  (giving linear 1), of NP (leading to 3), and of  $P_2$  (resulting in bridged 2) at the CISD(full)/6-311G(df,p) level and including vibrational zero-point energy corrections determined at this level. Our best estimates for these proton affinities associated with the formations of 1-3 are 116.3, 161.2, and 194.2 kcal/mol, respectively. The experimental proton affinity of  $N_2$  is 118.2 kcal/mol,<sup>58</sup> and it is in excellent agreement with our best theoretical value and also with other reported values<sup>59</sup> that included good correlation treatments. Also, the experimental proton affinity of 191.0 kcal/ mol NP was recently reported<sup>60</sup> and it is within 3 kcal/mol of our best theoretical value.

Proton Affinities and Polarizabilities. Selected spectroscopic properties including polarizabilities for the diatomic molecules are summarized in Table IX. The polarizabilities increase in the order  $N_2 < NP < P_2$  and this increase parallels the increase in their proton affinities. The polarizabilities perpendicular to the bond axis,  $\alpha_{perp}$ , are significantly smaller than  $\alpha_{para}$  and the ratio  $\alpha_{para}/\alpha_{perp}$  is about the same for  $N_2$  (2.1) and PN (1.9) but it is

I F IV. Spectroscopic Properties of the Distomics

| TABLE IX: Spectro                 | scopic Propert | ies of the Dia | tomics   |
|-----------------------------------|----------------|----------------|----------|
| parameter                         | NN             | NP             | PP       |
| molecular mass                    | 14.003         | 16.883         | 30.974   |
|                                   | RHF/6-31G      | ; <b>*</b>     |          |
| force constant                    | 62.757         | 25.110         | 15.037   |
| dipole $\mu$                      | 0.0            | 2.921          | 0.0      |
| quadrupole perp                   | -10.182        | -17.395        | -26.276  |
| quadrupole para                   | -11.671        | -20.312        | -26.977  |
| polarizability $\alpha_{perp}$    | 5.856          | 14.799         | 21.700   |
| polarizability $\alpha_{para}$    | 13.380         | 29.872         | 66.651   |
| rotational constant               | 62.070         | 24.753         | 9.438    |
|                                   | MP2/6-31G      | *              |          |
| force constant                    | 39.202         | 13.321         | 9.377    |
| dipole µ                          | 0.0            | 2.289          | 0.0      |
| quadrupole $\theta_{\rm nern}$    | -10.149        | -17.531        | -26.000  |
| quadrupole $\theta_{\text{para}}$ | -11.895        | -20.280        | -26.824  |
| polarizability apern              | 6.177          | 15.008         | 21.569   |
| polarizability $\alpha_{para}$    | 12.999         | 29.166         | 62.732   |
| rotational constant               | 56.528         | 22.222         | 8.738    |
|                                   | MP2/6-3110     | <u>;</u> *     |          |
| frequency v <sub>calc</sub>       | 2185.6 og      | 1180.7 σ       | 716.8 σg |
| force constant                    | 39.411         | 13.876         | 9.376    |
| dipole $\mu$                      | 0.0            | 2.491          | 0.0      |
| IR intensity                      | 0.0            | 7.6            | 0.0      |
| rotational constant               | 57.641         | 22.677         | 8.804    |
|                                   | MP2/6-311G     | (df)           |          |
| frequency v <sub>ealc</sub>       | 2208.1 og      | 1204.3 σ       | 736.4 σg |
| force constant                    | 40.227         | 14.427         | 9.895    |
| dipole $\mu$                      | 0.0            | 2.437          | 0.0      |
| IR intensity                      | 0.0            | 8.0            | 0.0      |
| rotational constant               | 58.102         | 22.659         | 8.876    |

<sup>a</sup> Frequencies in  $cm^{-1}$ , force constants in mdyn/Å, IR intensities in km/mol, dipole moments in debye (1 au = 2.5418 D), quadrupoles in D-Å, polarizabilities in atomic units, rotational constants in GHz.

significantly larger for  $P_2$  (2.9). The ratios of  $\alpha_{para}/\alpha_{perp}$  might have been expected to reflect the stereochemical preferences regarding end-on or edge-on coordination to an electrophile and the absolute  $\alpha$  values may give an indication of the strength of such an interaction so long as the interaction is primarily electrostatic in nature.

**Proton versus Carbenium Ion Affinities.** The potential energy surfaces of protonated and methylated  $N_2$  and PN are qualitatively similar whereas the respective derivatives of  $P_2$  differ distinctly. Protonation leads to the bridged structure as the only minimum and the linear structure is a transition state structure. Methylation, on the other hand, results in minima for end-on and asymmetric edge-on coordination with the former being preferred.<sup>61</sup>

The proton is atypically electrophilic compared to carbenium ions because of its lack of core electrons and, for this simple reason, carbenium ion affinities are generally much smaller than proton affinities. For example, the methyl cation affinities of N<sub>2</sub>, P<sub>2</sub>, and NP, are 43.0, 71.3, and 100.4 kcal/mol, respectively, at MP4(fc,sdtq)/6-311G(df,p)//MP2(full)/6-311G(df,p) and including MP2(full)/6-31G(d) vibrational zero-point energies.<sup>18</sup> The smaller affinities are accompanied by smaller structural changes to the XY units upon addition of the electrophile and smaller electronic relaxations also are indicated. Model dependencies on structures are less pronounced for these methylated systems and second-order pertubational corrections do not affect the characteristics of the potential energy surfaces.<sup>18</sup> Caution is required nevertheless for systems with P  $\sigma$  lone pair dative bonds to electrophiles. For example,  $C_{3v}$  CH<sub>3</sub>PN<sup>+</sup> is a very shallow minimum on the RHF/6-31G\* and MP2(full)/6-31G\* potential energy surfaces and this structure might be a transition state structure.<sup>62</sup> For CH<sub>3</sub>PP<sup>+</sup>, the isomer preference energy might be affected to some extent as well, but the qualitative conclusions should remain valid.

## Conclusion

The potential energy surfaces of protonated  $N_2$ ,  $P_2$ , and PN all were examined at the RHF, MP2(full), and CISD(full) levels with the 6-31G\* basis set. At all levels, end-on protonation of  $N_2$ , edge-on protonation of  $P_2$ , and N protonation of PN are favored and our best estimates for their proton affinities are 116.3, 161.2, and 194.2 kcal/mol, respectively, at CISD(full)/6-311G-(df,p) and including vibrational zero-point energy corrections determined at that level. It is emphasized that the proton affinities do not necessarily reflect the stability of these ions toward dissociation. The dissociations of 1-3 into H\* atom and the radical cations  $N_2^+$  ( $^2\Sigma^+$ ),  $P_2^+$  ( $^2\Sigma^+$ ), and PN<sup>+</sup> ( $^2\Sigma$ ), respectively, are endothermic by 151.9, 138.9, and 74.6 kcal/mol, respectively, at the CISD(full)/6-31G\* level and including vibrational zero-point energies calculated at that level.<sup>63</sup> For 2 and 3 and in contrast to 1, the homolytic dissociations are thermodynamically favored compared to deprotonation and future studies of their activation barriers will have to show whether radical formation provides for a viable reaction channel.

For protonated  $N_2$  and  $P_2$ , the bridged structure becomes destabilized relative to the linear structure with the same bond length as the X-X bond length is shortened. We conclude that the preference for the bridged structures is closely related to the X-X bond length per se and that the structural preferences of the protonated systems reflect the same factors that also determine the X-X bond lengths in the neutral diatomics. Because of the incompleteness of experimental structural and spectroscopic data for the protonated systems, the model dependencies of bond lengths and vibrational frequencies of the neutral diatomics, for which experimental data exist, were studied and the scale factors derived for these also appear adequate for the protonated species in light of the demonstrated close agreement of the model dependencies.

Qualitative differences between the MP2 and CISD levels occur for linear HP<sub>2</sub><sup>+</sup> and HPN<sup>+</sup> with regard to their characters. The understanding of these differences is important to judge the validity of MP2 derived theoretical data of larger systems for which full optimizations at the CISD level might not be feasible. Our results suggest that  $P \sigma$  lone pair dative bonding of the proton leads to local minima at the second-order Møller-Plesset level because of an artificial destabilization of the structures in their vicinities on the potential energy surfaces that results in an artificial activation associated with the change from end-on to edge-on coordination. Larger well polarized basis sets with second-order f-type polarization functions reduce (or even eliminate) this deficiency. With regard to isomer stabilities, the MP2 results qualitatively agree with the CISD predictions but modest quantitative differences occur. Our study suggests that the underestimation of the preference for bridged over linear HPP+ at the MP2 level is caused by the underestimation of electron correlation effects on the bridged species rather than by an overestimation of the stability of the linear structures. Both of these features indicate that MP2 theory tends to underestimate the stabilities of bridged structures, and more so for the unsymmetrically bridged species.

Acknowledgment is made to the donors of the Petroleum Research Fund (PRF# 24399-G4), administered by the American Chemical Society, for support of this research. P.E.H. thanks the National Science Foundation for a 1991 Senior Enhancement Fellowship. R.G. thanks the National Science Foundation for a travel grant to the International Conference on Phosphorus Chemistry in Toulouse, France, and Professor Slayton A. Evans for organizing this grant.

## **References and Notes**

(1) (a) Presented in part at the XIIth International Conference on Phosphorus Chemistry, Toulouse, France, July 1992. (b) For part 1 of the series, see ref 18.

(2) Multiple Bonds and Low Coordination in Phosphorus Chemistry; Regitz, M., Scherer, O., Eds.; Thieme Verlag: New York, 1990

(3) Reviews: (a) Kirmse, W. Angew. Chem., Int. Ed. Engl. 1976, 15, 251. (b) Laali, K.; Olah, G. A. Rev. Chem. Intermed. 1985, 6, 237

(4) (a) Mohrig, J. R.; Keegstra, K. J. Am. Chem. Soc. 1967, 89, 5492. (b) Mohrig, J. R.; Keegstra, K.; Maverick, A.; Roberts, R.; Wells, S. J. J. Chem. Soc., Chem. Commun. 1974, 780. (c) Avaro, M.; Levisalles, J.; Sommer, J. M. J. Chem. Soc., Chem. Commun. 1968, 410. (d) McGarrity, J. F.; Cox, D. Ph. J. Am. Chem. Soc. 1983, 105, 3961.

 (5) (a) Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1972, 94, 2425.
 (b) Foster, M. S.; Williamson, A. D.; Beauchamp, J. L. Int. J. Mass. Spectrom. Ion Phys. 1974, 15, 429. (c) McMahon, T. B.; Heinis, T.; Nicol, G.; Hovey, J. K.; Kebarle, P. J. Am. Chem. Soc. 1988, 110, 7591.

(6) Glaser, R. J. Phys. Chem. 1989, 93, 7993.
(7) Glaser, R. J. Am. Chem. Soc. 1987, 109, 4237.

(8) Glaser, R.; Choy, G. S.-C.; Hall, M. K. J. Am. Chem. Soc. 1991, 113, 1109

(9) Glaser, R.; Horan, C. J.; Nelson, E.; Hall, M. K. J. Org. Chem. 1992, 57, 215.

(10) Glaser, R. J. Comp. Chem. 1990, 11, 663.
(11) (a) Lappert, M. F.; Poland, J. S. J. Chem. Soc., Chem. Commun.
1969, 1061. (b) Day, B. W.; George, T. A.; Iske, S. D. J. Am. Chem. Soc.
1975, 97, 4127. (c) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1975, 14, 355. (d) Hillhouse, G. L.; Haymore, B. L. Inorg. Chem. 1979, 18, 2423. (e) Herrmann, W. A.; Ziegler, M. L.; Weidenhammer, K. Angew. Chem., Int. Ed. Engl. 1976, 15, 368.

(12) The detection of a stable aliphatic C(sp<sup>3</sup>) connected diazonium ion was claimed recently: Maxwell, J. L.; Brown, K. C.; Bartley, D. W.; Kodadek, T. Science 1992, 256, 1544.

(13) Glaser, R.; Chen, G. S.; Barnes, C. L. Angew. Chem. 1992, 104, 749; Angew. Chem., Int. Ed. Engl. 1992, 31, 740.

(14) (a)  $C_{\beta}$ -N analogue 1-phenylsulfonyl-2-pyrazoline-3-diazonium tetrafluoroborate: Gorelik, M. V.; Tafeenko, V. A.; Rybinov, V. I.; Medvedev, S. V.; Glukhovtsev, M. N. Zh. Org. Khim. 1989, 25, 2483. (b) Cg-P analogue bis(diisopropylamino)chlorotriphenylmethyldiazomethylenephosphorane hexafluorophosphate: Sotiropoulos, J.-M.; Baceiredo, A.; Horchler von Loquenghuin, K.; Dahan, F.; Bertrand, G. Angew. Chem., Int. Ed. Engl. 1991, 30, 1154; Angew. Chem. 1991, 103, 1174.

(15) Reviews: (a) Scherer, O. P. Angew. Chem., Int. Ed. Engl. 1985, 24,
924. (b) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986, 25, 56. (c) Vaira, M. D.; Stoppioni, P.; Peruzzini, M. Polyhedron 1987, 6, 351.

(16) Niecke, E.; Nieger, M.; Reichert, F.; Schoeller, W. W. Angew. Chem., Int. Ed. Engl. 1988, 27, 1713

(17) Niecke, E.; Nieger, M.; Reichert, F. Angew. Chem., Int. Ed. Engl. 1988, 27, 1715.

(18) Glaser, R.; Horan, C. J.; Choy, G. S.-C.; Harris, B. J. Phys. Chem. 1992, 96, 3689.

1992, 90, 3689.
(19) 6-316\* basis set: (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. (c) Binkley, J. S.; Gordon, J. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. (d) Six Cartesian d-functions were used. (20) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (b) Five pure d- and seven pure f-functions were used with the valence triple chains and

with the valence-triple- $\zeta$  basis sets.

(21) (a) Gaussian90: Frisch, M. J.; Head-Gordon, M.; Trucks, G. M.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzales, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1990. (b) Calculations were carried out on a network of Silicon Graphics and Digital Equipment workstations and on an IBM 3090 mainframe with attached FPS processor. (22) CRC Handbook of Chemistry and Physics, 63rd ed.; CRC Press:

Boca Raton, FL, 1985/86; p F-181.

(23) Structure and frequency of PN: See ref 24, p 564.
 (24) Structure and frequency of P<sub>2</sub>: Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979.

(25) Structure and frequencies of  $N_2$ : See ref 24, p 553. (26) For near-HF-limit calculations of  $P_2$  see: (a) Mulliken, R. S.; Liu, B. J. Am. Chem. Soc. 1971, 93, 6738. (b) CI calculations: McLean, A. D.; Liu, B.; Chandler, G. S. J. Chem. Phys. 1984, 80, 5130.

(27) Ab initio pseudopotential SCF calculations: (a) Osman, R.; Coffey, P.; Van Wazer, J. R. *Inorg. Chem.* 1976, 17, 287. (b)  $P_n$  with n = 2, 4, 8: Trinquier, G.; Malrieu, J.-P.; Daudey, J.-P. *Chem. Phys. Lett.* 1981, 80, 552. (c)  $P_2$  and  $P_4$ : Wedig, U.; Stoll, H.; Preuss, H. *Chem. Phys.* 1981, 61, 117.

(28) For a contrary opinion, see: Brundle, C. R.; Kuebler, N. A.; Robin,
 N. B.; Basch, H. Inorg. Chem. 1972, 11, 20.
 (29) Schmidt, M. W.; Gordon, M. S. Inorg. Chem. 1985, 24, 4503; and

references therein.

(30) For earlier ab initio computations on PN and its protonated ions, see: Maclagan, R. G. A. R. J. Phys. Chem. 1990, 94, 3373, and references therein.

(31) A CI study of PN gave the correct equilibrium distance for the ground state: Grein, F.; Kapur, A. J. Mol. Spectrosc. 1983, 99, 25. Note that their CI energy is higher than the MP4 energies reported here. (32) (a) Turner, B. E. Astrophys. J. 1974, 193, L83. (b) Green, S.;

Montgomery, J. A. Thaddeus, P. Astrophys. J. 1974, 193, L89

(33) Olah, G. A.; Herges, R.; Felberg, J. D.; Prakash, G. K. S. J. Am. Chem. Soc. 1985, 107, 5282.

 (34) Leigh, G. J. Acc. Chem. Res. 1992, 25, 177.
 (35) HF/6-31G\* and MP2/6-31G\* calculations of linear 1 were reported: DeFrees, D. J.; McLean, A. D. J. Chem. Phys. 1985, 82, 333.

(36) Double-5 structure of linear 1: Hillier, I. H.; Kendrick, J. J. Chem. Soc. Chem. Commun. 1975, 526.

(37) For RHF and CISDQ study of the deprotonation of linear 1, see:

Kraemer, W. P.; Komornicki, A.; Dixon, D. A. Chem. Phys. 1986, 105, 87. (38) Botschwina, P. Chem. Phys. Lett. 1984, 107, 535, and references therein.

(39) Del Bene, J. E.; Frisch, M. J.; Raghavachari, K.; Pople, J. A. J. Phys. Chem. 1982, 86, 1529.

Chem. 1982, 86, 1529. (40) Busch, T.; Schoeller, W. W.; Niecke, E.; Nieger, M.; Westermann, H. Inorg. Chem. 1989, 28, 4334.

H. Inorg. Chem. 1989, 28, 4334.
 (41) Nguyen, M. T.; Fitzpatrick, N. J. Chem. Phys. Lett. 1988, 146, 524.
 (42) Maclagan, R. G. A. R. J. Phys. Chem. 1990, 94, 3373.

(43) Buenker, R. J.; Bruna, P. J.; Peyerimhoff, S. D. Isr. J. Chem. 1980, 19, 309.

(44) Professor Schoeller agrees with our results regarding the shape of the potential energy surface; his more recent MCSCF calculations agree with our CISD results: Private communication at the XIIth ICPC 1992.

(45) In fact, multiplication of the computed X-Y bond lengths in 1-4 with the appropriate scale factors from Table V results in X-Y bond estimates that differ less than 0.01 Å (and much less in most cases)!

(46) The differences given are those determined at CISD(full)/ $6-31G^*$  and the respective values determined at the higher CISD levels are within  $10^{-3}$ .

(47) (a) Obase, H.; Tsuji, M.; Nishimura, Y. Chem. Phys. Lett. 1981, 81,
(b) Obase, H.; Tsuji, M.; Nishimura, Y. Chem. Phys. 1983, 74, 89.

(48) For a comparison of  $N_2^+$ ,  $PN^+$  and  $P_2^+$ , see: Grein, F. Chem. Phys. 1988, 120, 383.

(49) Compare ref 35.

(50) Gudemann, C. G.; Begemann, M. H.; Pfaff, J.; Saykally, R. J. J. Phys. Chem. 1983, 78, 5837. 87, 3847. (b) See also ref 35. (c) See also ref 37. (53)  $\Delta\Delta E = -0.600 - 13.508d(NN) + 0.801d^2(NN)$  with  $R^2 = 1.000$ .

(54)  $\Delta \Delta E = -53.846 + 16.108d(PP) - 1.002d^2(PP)$  with  $R^2 = 1.000$ .

(55) In fact, the hypothetical protonated systems 1 (2) with an NN (PP) bond length of about 2.0 (1.0) Å, would prefer edge-on (end-on) coordination more than the real system 2 (1).

(56) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley: New York, 1986, p 310ff.

(57) (a) Pullman, A.; Berthod, H.; Gresh, N. Int. J. Quantum Chem. 1976, 10, 59. (b) Hobza, P.; Zahradnik, R. Chem. Rev. 1988, 88, 871, and references therein.

(58) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.

(59) (a) 117.4 kcal/mol calculated with highly correlated CEPA level: In ref 38. (b) 119.7 kcal/mol at CISDQ level: In ref 37. (c) 117.8 kcal/mol at MP4/RHF: In ref 39.

(60) Adams, N. G.; McIntosh, B. J.; Smith, D. Astronom. Astrophys. 1990, 232(2), 443.

(61) On the RHF/6-31G\* and MP2/6-31G\* potential energy surfaces and at the MP3/6-31G\* level based on these structures as well.

(62) We optimized this structure also at MP2(full)/6-311G(df,p) but did not characterize it via computation of the Hessian matrix.

(63) Full details of the study of homolytic H-X bond dissociation paths will be described elsewhere. The CISD reaction energies given are size consistency corrected and the VZPE values were used as calculated without scaling.