The Effects of the First- and Second-Row Substituents on the Structures and Energies of $\mathrm{PH}_{4} \mathrm{X}$ Phosphoranes. An ab Initio Study

Peng Wang, ${ }^{\dagger}$ Yala Zhang, ${ }^{\dagger}$ Rainer Glaser, ${ }^{\dagger}$ Alan E. Reed, ${ }^{\ddagger}$ Paul von R. Schleyer, ${ }^{, \dagger}{ }^{\dagger}$ and Andrew Streitwieser ${ }^{*, \dagger}$
Contribution from The Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany, and Department of Chemistry, University of California, Berkeley, California 94720. Received February 12, 1990

Abstract

Pentacoordinated phosphoranes, $\mathrm{PH}_{4} \mathrm{X}$, substituted with a full range of first- and second-row groups have been studied with ab initio computations. The apically and equatorially substituted trigonal-bipyramidal (TB) and apically substituted square-pyramidal (SP) conformations were fully optimized with the $3-21 \mathrm{G}\left({ }^{*}\right)$ and $6-31 \mathrm{G}^{*}$ basis sets. Frequency calculations were performed at $6-31 \mathrm{G}^{*}$ on the optimized structures. Correlation corrections through the MP4 level were carried out on these $6-31 G^{*}$ structures. Energies calculated with zero-point energy corrections, i.e., at MP4SDTQ/6-31G* + ZPE, provide relative energies of various isomers. The apically substituted SP structures for $\mathrm{PH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{Li}, \mathrm{Na}, \mathrm{BeH}$, and MgH$)$ are the most stable. The intrinsic apicophilicities of the first- and second-row groups are derived and are compared to available experimental data. The apicophilicities (in $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) are $\mathrm{OH}(0.4)>\mathrm{SH}(-0.1)>\mathrm{CH}_{3}(-0.9)>\mathrm{PH}_{2}(-3.3)>\mathrm{NH}_{2}(-7.2)>\mathrm{SiH}_{3}(-8.6)$, Due to their high degree of ion pair character, $\mathrm{PH}_{4} \mathrm{~F}$ and $\mathrm{PH}_{4} \mathrm{Cl}$ are unsuitable as models for relative energy comparisons. π interaction energies were evaluated by calculating various $\mathrm{PH}_{4} \mathrm{X}\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{PH}_{2}, \mathrm{OH}, \mathrm{SH}\right)$ conformations. Natural bond orbital (NBO) analysis on these conformers shows that the π interaction is due chiefly to $\mathrm{n}_{\mathrm{x}} \rightarrow \sigma_{\mathrm{P}-\mathrm{H}^{*}}$. Inductive and π bonding contributions are estimated for the first-row group substituents. The effects of substitution (e.g., relative energies) that are dominated by inductive interactions correlate linearly with group electronegativities.

Introduction

The last two decades have seen a rapid development of the stereochemistry of phosphorus compounds. ${ }^{1}$ Pentacoordinated models have been employed to help interpret a wide variety of reaction mechanisms including phosphate ester hydrolysis, the Wittig reaction, and biologically important phosphoryl transfer reactions. ${ }^{2}$ Pentacoordinated phosphorus compounds have two basic structures: trigonal-bipyramid (TP) and square-pyramid (SP). Because of the stereochemical nonrigidity, ligand exchange is common in five-coordinated phosphoranes. In 1960, Berry proposed that this stereomutation takes place via a $D_{3 h}-C_{2 v}-C_{4 v}$ (TP-TP-SP) pathway. ${ }^{3}$ Although largely inferential, this mechanism has been generally accepted and is employed to account for rearrangements in pentacoordinated phosphoranes. $C_{2 v}$ pathways or $C_{4 v}$ transition states have been demonstrated to be general. An alternative "turnstile" mechanism has also been proposed to explain intramolecular rearrangements. ${ }^{4-6}$ The topological equivalence of these two processes in some systems has been pointed out.?

Many studies of the bonding, geometries, and relative energies of various isomers of the two basic structures have been published. Theoretical investigations have employed the directed valence approach, ${ }^{8}$ the valence electron-pair repulsion model, ${ }^{9}$ a threecenter four-electron bonding scheme, ${ }^{10} \mathrm{EHT}$ analysis, and, more recently, additional semiempirical and ab initio calculations. ${ }^{12-20}$ Dieters and Holmes have recently contributed an extensive series of substituted phosphoranes, but the computations were constrained to idealized TP and SP structures. ${ }^{20}$

Generally, the relative energies of apical vs equatorial isomers are believed to be controlled by the substituent electronegativities, ${ }^{21}$ π-bonding, ${ }^{11}$ steric interactions, and ring strain. ${ }^{22}$ By using experimental data based on temperature-dependent NMR spectroscopy, Holmes has developed an empirical apicophilicity scale. ${ }^{23}$ Some monosubstituted model phosphoranes have also been examined by computation. ${ }^{24}$ However, as pointed out by Magnusson, ${ }^{25}$ the relative energies of singly substituted phosphoranes vary considerably with different basis sets. The use of basis sets at least as large as $6-31 \mathrm{G}$ supplemented with d functions ($6-31 \mathrm{G}^{*}$) is essential to obtain reliable relative energies.

[^0]Nitrogen, oxygen, and halogen ligands are commonly used for substituent studies. Phosphoranes substituted by electropositive
(1) Review on phosphorus chemistry: A Specialist Periodical Report: Organophosphorus Chemistry; The Royal Society of Chemistry: Burlington House, London.
(2) Review on experimental and theoretical work on pentavalent phosphorus: Holmes, R. R. Pentacoordinated Phosphorus; ACS Monographs No. 175 and 176; American Chemical Society: Washington, DC, 1980; Vol. I and II.
(3) Berry, R. S. J. Chem. Phys. 1960, 32, 933.
(4) (a) Ugi, I.; Marquarding, D.; Klusacek, H.; Gokel, G.; Gillespie, P. Angew. Chem. 1970, 82, 741. (b) Ugi, I.; Ramirez, F.; Marquarding, D.; Klusacek, H.; Gokel, G.; Gillespie, P. Angew. Chem., Int. Ed. Engl. 1970, 9, 725. (c) Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F, Acc. Chem. Res. 1971, 4, 288. (d) Lemmen, P.; Baumgartner, R.; Ugi, I.; Ramirez, F. Chem. Scr. 1988, 28, 451.
(5) Auf der Heyde, T. P. E.; Burgi, H.-B. Inorg. Chem. 1989, 28, 3982.
(6) (a) Russegger, P.; Brickmann, J. J. Chem. Phys. Lett. 1975, 30, 276. (b) Kutzelnigg, W.; Wasilewski, J. J. Am. Chem. Soc. 1982, 104, 953. (c) Altmann, J. A.; Yates, K.; Csizmadia, I. G. J. Am. Chem. Soc. 1976, 98, 1450.
(7) Wang, P.; Agrafiotis, D. K.; Streitwieser, A.; Schleyer, P. v. R. J. Chem. Soc., Chem. Commun. 1990, 201.
(8) Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.
(9) Gillespie, R. J. Molecular Geometry; Van Nostrand-Rheinhold: London, 1972.
(10) (a) Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112; Rec. Chem. Prog. 1962, 23, 195; Acta Crystallogr. 1961, 14, 585, (b) Rundle, R. E. Prog. Chem. 1963, l, 81. (c) Hach, R. J.; Rundle, R. E. J. Am. Chem. Soc. 1951, 73, 4321 .
(11) Hoffmann, R.; Howell, J. M.; Muetterties, E. L. J. Am. Chem. Soc. 1972, 94, 3047.
(12) Rauk, A.; Allen, L. C.; Mislow, K. J. Am. Chem. Soc. 1972, 94, 3035.
(13) Strich, A.; Veillard, A. J. Am. Chem. Soc. 1973, 95, 5574.
(14) (a) Keil, F.; Kutzelnigg, W. J. Am. Chem. Soc. 1975, 97, 3623. (b) Kutzelnigg, W.; Wasilewski, J. J. Am. Chem. Soc. 1982, 104, 953.
(15) Hoffmann, R.; Howell, J. M.; Rossi, A. R. J. Am. Chem. Soc. 1976, 98, 2484.
(16) Howell, J. M. J. Am. Chem. Soc. 1977, 99, 7447.
(17) Krogh-Jesperson, M. B.; Chandrasekhar, J.; Würthwein, E. U.; Collins, J. B.; Schleyer, P, v. R. J. Am. Chem. Soc. 1980, 102, 2263.
(18) Holmes, R. R. J. Am. Chem. Soc. 1984, 106, 3745.
(19) Trinquier, G.; Dandey, J. P.; Caruana, G.; Madanle, Y. J. Am. Chem. Soc. 1984, 106, 4794.
(20) Deiters, J. A.; Holmes, R. R. J. Am. Chem. Soc. 1988, 110, 7672. (21) Muetterties, E. L.; Mahler, W.; Schmutzler, R. Inorg. Chem. 1963, 2, 613 .
(22) Westheimer, F. H. Acc. Chem. Res. 1968, $l, 70$.
(23) Holmes, R. R. J. Am. Chem. Soc. 1978, 100, 433.
(24) McDowell, R. S.; Streitwieser, A., Jr. J. Am. Chem. Soc. 1985, 107, 5849.

Table I. Geometries and Relative Energies of PH_{5} Isomers ${ }^{a}$

	$\mathrm{TP}\left(D_{3 h}\right)$		$\mathrm{SP}\left(C_{40}\right)$			$E_{1}{ }^{\text {b }}$	$E_{2}{ }^{\text {c }}$
	P-He	$\mathrm{P}-\mathrm{H}_{\mathrm{a}}$	P- H_{b}	$\mathrm{P}-\mathrm{H}_{\mathrm{a}}$	$\mathrm{He}_{\mathrm{e}} \mathrm{PH}_{\mathrm{a}}$		
3-21G	1.425	1.541	1.489	1.402	99.53	-2.2	81.1
3-21G*	1.405	1.465	1.440	1.387	100.22	-2.6	46.1
6-31G	1.431	1.541	1.440	1.407	100.00	-2.6	82.1
6-31G*	1.407	1.464	1.440	1.388	100.50	-2.8	47.1
6-31G**//6-31G*						-2.9	
6-31G(2d,p)//6-31G*						-2.8	
						-3.0	
MP2/6-31G*//6-31G*						-2.0	49.2
MP3/6-31G*//6-31G*						-1.8	50.6
MP4/6-31G*//6-31G*						-1.6	51.9
MP4/6-31G*//6-31G**ZPE ${ }^{\text {d }}$						-1.1	58.0
full Cl^{e}						-1.9	
Cl^{\prime}						-1.2	

${ }^{a}$ Bond lengths in \AA, bond angles in deg, and relative energies in kcal mol ${ }^{-1}$. ${ }^{b} E_{1}=E(\mathrm{TP})-E(\mathrm{SP}) .{ }^{c} E_{2}=E(\mathrm{TP})-E\left(\mathrm{PH} 3+\mathrm{H}_{2}\right) . \mathrm{The}$ dissociation barrier of PH_{5} to give $\mathrm{PH}_{3}+\mathrm{H}_{2}$ is $36.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ at CI level. ${ }^{6 \mathrm{~b}}$ d Zero-point energies were calculated at $6-31 \mathrm{G}^{*}$ and scaled by 0.89 . ${ }^{\text {e }}$ Reference 6b. ${ }^{f}$ Reference 6 a .

Table II. Energies ${ }^{a}$ of the First-Row Element-Substituted Phosphoranes

X	no.	sym	$\begin{gathered} 3-21 G\left(^{*}\right) \\ / / 3-31 G\left(^{*}\right) \end{gathered}$	$\begin{gathered} 6-31 G^{*} \\ / / 6-31 G^{*} \end{gathered}$	$\begin{gathered} \hline \text { MP2/6-31G* } \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MP} 3 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MP} 4 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	ZPE ${ }^{\text {b }}$	$n^{\text {c }}$
H	1a	$D_{3 h}$	341.86342	343.49988	343.61716	343.64016	343.64586	29.10	0
	1s	$C_{4 v}$	341.85928	343.49536	343.61401	343.63734	343.64324	28.59	1
Li	3a	$C_{3 v}$	348.63211	350.31705	350.44963	350.47404	350.48081	20.17	2
	$3 \mathrm{e}^{\text {d }}$	$C_{2 v}$	348.67882	350.36412	350.48987	350.51226	350.52032	21.04	1
	3 s	$C_{4 c}$	348.68640	350.37942	350.49799	350.52057	350.52857	21.69	0
BeH	4a	C_{30}	356.36642	358.09157	358.24081	358.26954	358.27967	26.42	0
	$4^{\text {d }}$	C_{20}	356.40305	358.12683	358.27492	358.30299	358.31258	27.56	1
	4s	$C_{4 v}$	356.40834	358.13105	358.28032	358.30852	358.31816	27.95	0
BH_{2}	$5 \mathrm{a}_{\perp}$	C_{s}	366.93956	368.72479	368.91196	368.94537	368.95686	35.38	0
	$5{ }^{\text {e }}$	$C_{2 v}$	366.96579	368.74919	368.93478	368.96757	368.97882	36.26	1
	5 s	$C_{2 v}$	366.96017	368.74242	368.92699	368.96218	368.97347	36.37	1
	5a	C_{s}	366.93933	368.72481	369.91196	368.94535	368.95683	34.40	1
	$5 \mathrm{e}_{\perp}$	C_{20}	366.95387	368.73797	368.92379	368.95693	368.96815	36.81	1
CH_{3}	6a	C_{30}	380.69705	382.54449	382.79431	382.82637	382.83976	48.66	0
	6 e	C_{s}	380.69980	382.54721	382.79625	382.82834	382.84160	48.95	0
	6 s	C_{s}	380.69359	382.54013	382.78844	382.82109	382.83425	48.36	2
NH_{2}	$7 \mathrm{a}^{\prime}$	C_{s}	396.62290	398.55547	398.83747	398.86354	398.87627	42.27	0
	$7{ }_{\text {+ }}$	C_{20}	396.64375	398.56762	398.85108	398.87602	398.88908	43.04	0
	7s	$C_{2 v}$	396.60577	e					
	$7 \mathrm{a}_{11}$	C_{s}	396.62332	398.55272	398.83438	398.86022	398.87266	41.31	2
	$7{ }_{1}$	$C_{2 v}$	396.60114	398.52839	398.80770	398.83423	398.84635	40.67	2
	$7 \mathrm{e}^{\prime}$	C_{s}	396.60208	398.53727	398.81865	398.84517	398.85806	41.79	1
OH	8 a	C_{s}	416.36370	418.40714	418.70448	418.72395	418.73673	34.56	0
	$8 \mathrm{e}_{\perp}$	C_{s}	416.36747	418.40450	418.70489	418.72304	418.73721	35.24	0
	8 s	C_{s}	416.33282	418.36975	418.66251	418.68277	418.69570	33.59	1
	$8 \mathrm{e}_{1}$	C_{s}	416.34738	418.38594	418.68357	418.70271	418.71608	33.30	2
F	9 a	C_{30}	440.26812	442.43020	442.71844	442.73397	442.74738	27.17	0
	9 e	C_{20}	440.25599	442.41264	442.70441	442.71856	442.73374	26.66	1
	9s	C_{40}	440.22459	442.37744	442.66252	442.67815	442.69252	26.19	1

${ }^{a}$ Absolute energies in -au. ${ }^{b}$ Zero point energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) were calculated at $6-31 \mathrm{G}^{*},{ }^{c}$ Number of imaginary frequencies. ${ }^{d}$ Partially optimized; see text. ${ }^{\circ}$ Converted to $7 e_{\perp}$.
groups are difficult to investigate experimentally. The entire set of first- and second-row substituents can only be studied in a systematic way by computations. ${ }^{26}$ Moreover, there are few theoretical results on SP structures. The calculational results in this paper provide insight into the nature of substitution effects of first- and second-row groups on phosphoranes in both TP and SP conformations. In addition, we provide a large body of fundamental structure and energy data to facilitate further theoretical and experimental investigations.

Methods

Standard single-determinant spin-restricted Hartrec-Fock calculations were performed with the GAUSSIAN 80^{27} and GAUSSIAN 82^{28} programs.

[^1]Optimizations with Schlegel's gradient technique ${ }^{29}$ were carried out under the constraints of the point group specified; further constraints were imposed in some cases. All calculations were carried out with standard $3-21 \mathrm{G}\left({ }^{*}\right)^{30}$ and $6-31 \mathrm{G}^{* 31}$ basis sets. Harmonic vibrational frequencies were calculated at $6-31 \mathrm{G}^{*}$, and zero-point energies (ZPE) were scaled by $0.89 .{ }^{32}$ Full fourth-order Moller-Plesset (MP4) ${ }^{33}$ correlation cor-

[^2]Table III. Energies ${ }^{a}$ of the Second-Row Element-Substituted Phosphoranes

X	no.	sym	$\begin{gathered} 3.21 \mathrm{G}\left(^{*}\right) \\ \left./ / 3-31 \mathrm{G}{ }^{*}\right) \end{gathered}$	$\begin{gathered} 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 2 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 3 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 4 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	ZPE ${ }^{\text {b }}$	n^{c}	
Na	11a	$C_{3 v}$	502.09879	504.71837	504.85068	504.87572	504.88639	21.30	0	
	$11 \mathrm{e}^{d}$	C_{20}	502.14115	504.76067	504.88717	504.90912	504.91755	20.54	1	
	11s	C_{40}	502.14706	504.76538	504.89304	504.91533	504.92340	21.09	0	
MgH	12a	C_{30}	540.30481	543.04769	543.19475	543.22340	543.23408	25.14	0	
	$12 \mathrm{e}^{\text {d }}$	$C_{2 v}$	540.34410	543.08545	543.23055	543.25794	543.26773	25.18	1	
	12s	C_{40}	540.35092	543.09081	543.23713	543.26460	543.27436	25.60	0	
AlH_{2}	$13 \mathrm{a}_{1}$	C_{s}	583.04330	585.94794	586.11432	586.14701	586.15870	30.35	1	
	$13{ }_{\text {\| }}$	C_{20}	583.07978	585.98129	586.14702	586.17898	586.19012	31.07	0	
	13s	$C_{2 v}$	583.07953	585.98098	586.14722	586.17923	586.19040	35.10	1	
SiH_{3}	14a	C_{30}	630.49089	633.56424	. 633.76050	633.79721	633.81024	39.50	0	
	14e	C_{s}	630.50976	633.58167	633.77639	633.81268	633.82541	40.38	0	
	14 s	C_{s}	630.50978	633.58053	633.77613	633.81258	633.82539	39.86	2	
PH_{2}	$15 \mathrm{a}^{\prime}$	C_{s}	681.53855	684.80361	685.02144	685.05800	685.07117	36.02	0	
	$15{ }^{\prime \prime}$	C_{s}	681.54329	684.80885	685.02756	685.06393	685.07734	36.64	0	
	15s	$C_{2 v}$	681.47576	e						
	$15 a_{\\|}$	C_{s}	681.50351	684.77133	684.98487	685.02120	685.03344	35.32	1	
	15e	$C_{2 v}$	681.46969	684.73696	684.95984	684.99674	685.00995	34.84	3	
	$15{ }^{\prime}$	C_{s}	681.53527	684.80079	685.01986	685.05676	685.07031	36.20	1	
	$15 e_{\perp}$	C_{20}	681.50712	684.77336	684.99606	685.03133	685.04458	36.37	1	
SH	16a	C_{5}	737.56851	741.04750	741.27933	741.31284	741.32445	31.02	0	
	$16 \mathrm{e}_{\perp}$	C_{s}	737.56361	741.04278	741.27982	741.31303	741.32561	31.72	0	
	16s	C_{s}	737.53849	741.01671	741.25104	741.28534	741.29753	30.29	1	
	16e ${ }_{\text {\| }}$	C_{s}	737.54543	741.02516	741.26269	741.29664	741.30914	30.24	2	
Cl	17a	$C_{3 a}$	798.76240	802.47257	802.70825	802.73848	802.74794	25.95	0	
	17e	C_{20}	798.73852	802.45248	802.68454	802.71541	802.72479	24.77	1	
	17s	$C_{4 v}$	798.70599	802.41554	802.65805	802.68864	802.69913	24.99	1	

${ }^{a}$ Absolute energies in -au. ${ }^{b}$ Zero point energies (kcal mol ${ }^{-1}$) were calculated at $6-31 \mathrm{G}^{*}$. ${ }^{c}$ Number of imaginary frequencies. ${ }^{d}$ Partially optimized; see text. ${ }^{\text {e Did not converge. }}$

Table IV. Relative Energies ${ }^{a}$ of the First-Row Element-Substituted Phosphoranes

X	no.	sym	$\begin{gathered} 3-2 \operatorname{lG}\left({ }^{*}\right) \\ / / 3-31 G\left({ }^{*}\right) \end{gathered}$	$\begin{gathered} 6-31 \mathrm{G}^{*} \\ / / 6.31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 2 / 6 \cdot 31 \mathrm{G}^{*} \\ / / 6-3 \mathrm{iG}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 3 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 4 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \end{gathered}$	$\begin{gathered} \mathrm{MP} 4 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*}+\mathrm{ZPE}^{b} \end{gathered}$	
Li	3a	$C_{3 v}$	0.0	0.0	0.0	0.0	0.0	0.0	
	3e	$C_{2 v}$	-29.3	-29.5	-25.2	-24.0	-24.8	-24.7	
	3s	C_{40}	-34.1	-33.5	-30.3	-29.2	-30.0	-28.4	
BeH	4 a	$C_{3 v}$	0.0	0.0	0.0	0.0	0.0	0.0	
	4 e	C_{20}	-23.0	-22.1	-21.4	-21.0	-20.6	-19.8	
	4 s	C_{40}	-26.3	-24.8	-24.8	-24.5	-24.2	-22.8	
BH_{2}	$5^{5}{ }_{\perp}$	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0	
	$5 \mathbf{e}_{\\|}$	C_{s}	-16.4	-15.3	-14.3	-13.9	-13.8	-13.0	
	5s	C_{20}	-13.1	-11.0	-9.4	-10.5	-10.4	-9.5	
	$\mathbf{5 a}$	C_{5}	0.1	-0.0	0.0	0.0	0.0	-0.9	
	$5 \mathrm{e}_{\perp}$	C_{20}	-9.0	-8.3	-7.4	-7.2	-7.1	-5.8	
CH_{3}	6a	C_{30}	0.0	0.0	0.0	0.0	0.0	0.0	
	6e	C_{s}	-1.7	-1.7	-1.2	-1.2	-1.2	-0.9	
	6 s	C_{s}	2.2	2.7	3.7	3.3	3.4	3.2	
NH_{2}	$7 \mathbf{a}^{\prime}$	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0	
	$7 \mathrm{e}_{\perp}$	$C_{2 v}$	-13.1	-7.6	-8.5	-7.8	-8.0	-7.2	
	7 s	$C_{2 v}$	10.7						
	$7 \mathbf{a}_{\\|}$	C_{s}	-0.3	1.7	1.9	2.1	2.3	1.3	
	$7{ }_{\text {I }}$	C_{20}	13.6	17.0	18.7	18.4	18.8	17.4	
	$7 \mathrm{e}^{\prime}$	C_{s}	13.1	11.4	11.8	11.5	11.4	10.9	
OH	8 a	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0	
	$8 \mathrm{e}_{\perp}$	C_{s}	-2.2	1.7	-0.2	0.6	-0.3	0.4	
	8 s	C_{s}	19.3	23.5	26.3	25.8	25.7	24.8	
	$8 \mathrm{e}_{\\|}$	C_{s}	10.2	13.3	13.1	13.3	12.7	11.6	
F	9a	$C_{3 v}$	0.0	0.0	0.0	0.0	0.0	0.0	
	9e 98 98	$C_{2 v}$	7.6 27	11.0	8.8 35.1	9.7 35.0	8.6	8.0	
	9s	C_{40}	27.3	33.1	35.1	35.0	34.4	33.5	

${ }^{a}$ Relative energies are in $\mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$. ${ }^{b}$ Zero point energies were calculated at $6-31 \mathrm{G}^{*}$ and scaled by 0.89 .
rections were computed on the $6-31 \mathrm{G}^{*}$ geometries. Combined with the ZPE, our highest level is MP4SDTQ/6-31G*//6-31G*+ZPE. These energics will be used in the following discussions. Tables II and III list the absolute energics at various basis sets for the first- and second-row groups; Tables IV and V list the corresponding relative energies. Geometries around phosphorus are summarized in Tables VII, VIII, and IX. Further details are available from the senior authors.

Natural bond orbital (NBO) analysis, a method for representing ab initio wave functions in terms of localized Lewis structures, has been
employed, inter alia, to study hypervalence and hyperconjugation. ${ }^{34}$ This method provides a quantitative analytical framework for the interpretation of MO interactions. Thus, hyperconjugation can be equated with the electron delocalization from bond or lone pair NBOs into antibond NBOs (e.g., $n \rightarrow \sigma^{*}, n \rightarrow \pi^{*}$). ${ }^{35}$ The magnitude of the energy associated with such delocalization can be evaluated by deleting the antibonding orbitals from the Fock matrix and recalculating the total energy to determine the associated variational energy change. The total energy is decomposed into covalent $E_{\sigma \sigma}$ and noncovalent $E_{\sigma \sigma^{*}}$ contributions. $E_{\sigma \sigma^{*}}$ 1976, 10, I. Binkley, J. S.; Pople, J. A. Int. J. Quantum Chem. Symp. 1975, 9, 229 and references therein.
(34) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(35) Reed, A. E.; Schleyer, P., v. R. Inorg. Chem. 1988, $27,3969$.

Table V. Relative Energies ${ }^{a}$ of the Second-Row Element-Substituted Phosphoranes

X	no.	sym	$\begin{gathered} 3-21 \mathrm{G}\left({ }^{*}\right) \\ / / 3-31 \mathrm{G}\left({ }^{*}\right) \\ \hline \end{gathered}$	$\begin{gathered} 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { MP2/6-31G* } \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MP3/6-31G* } \\ / / 6-31 G^{*} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MP} 4 / 6-31 \mathrm{G}^{*} \\ / / 6-31 \mathrm{G}^{*} \\ \hline \end{gathered}$	$\begin{gathered} \text { MP4/6-31G* } \\ / / 6-31 G^{*}+\mathrm{ZPE}^{b} \\ \hline \end{gathered}$
Na	11a	C_{30}	0.0	0.0	0.0	0.0	0.0	0.0
	11 e	C_{20}	-26.6	-26.5	-22.9	-21.0	-19.6	-20.4
	11 s	${ }_{4}{ }_{4 v}$	-30.3	-29.5	-26.6	-24.9	-23.2	-23.4
MgH	12a	C_{30}	0.0	0.0	0.0	0.0	0.0	0.0
	12e	C_{20}	-24.6	-23.7	-22.5	-21.7	-21.1	-21.1
	12s	C_{40}	-28.9	-27.1	-26.6	-25.9	-25.3	-24.8
AlH_{2}	$13 a_{1}$	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0
	$13 \mathrm{e}_{\text {\| }}$	C_{s}	-22.9	-20.9	-20.5	-20.1	-19.7	-19.0
	13s	C_{20}	-22.7	-20.7	-20.6	-20.2	-19.9	-15.7
SiH_{3}	14a	C_{30}	0.0	0.0	0.0	0.0	0.0	0.0
	14 e	C_{s}	-11.7	-10.9	-10.0	-9.7	-9.5	-8.6
	145	C_{s}	-11.8	-10.2	-9.8	-9.6	-9.5	-9.1
PH2	$15 a^{\prime}$	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0
	$15 \mathrm{e}^{\prime \prime}$	C_{s}	-3.0	-3.3	-3.8	-3.7	-3.9	-3.3
	15s	C_{20}	39.4					
	15a	C_{s}	22.0	20.2	22.9	23.1	23.7	23.1
	$15{ }_{\text {d }}$	C_{20}	43.2	41.8	38.6	38.4	38.4	37.3
	$15{ }^{\prime}$	C_{s}	2.0	1.8	1.0	0.8	0.5	0.7
	$15 \mathrm{e}_{\perp}$	C_{20}	19.7	19.0	15.9	16.7	16.7	17.0
SH	16a	C_{s}	0.0	0.0	0.0	0.0	0.0	0.0
	$16{ }_{\text {d }}$	C_{s}	3.1	3.0	-0.3	-0.1	-0.7	-0.1
	16s	C_{s}	18.8	19.3	17.8	17.2	16.9	16.2
	$16{ }_{\text {\| }}$	C_{s}	14.5	14.0	10.4	10.2	9.6	8.8
Cl	17a	C_{30}	0.0 150	0.0	0.0	0.0	0.0	0.0
	17e	C_{20}	15.0	12.6	14.9	14.8	14.5	13.4
	17s	C_{40}	35.4	35.8	31.5	31.3	30.6	29.7

${ }^{a}$ Relative energies are in $\mathrm{kcal}_{\mathrm{mol}}{ }^{-}{ }^{b}$ Zero point energies were calculated at $6-31 \mathrm{G}^{*}$ and scaled by 0.89 .
can be calculated from second-order perturbation theory, where F is the Fock operator and ϵ_{σ} and $\epsilon_{\sigma}{ }^{*}$ are NBO orbital energies.

$$
E_{\sigma \sigma^{*}}=-2 \frac{\langle\sigma| F\left|\sigma^{*}\right\rangle^{2}}{\epsilon_{\sigma^{*}}-\epsilon_{\sigma}}
$$

We will use NBO analysis to examine the role of d orbitals in PH_{5} and the π effects of some substituents. The conclusions quantify concepts established by previous workers. Table VI lists the natural charges of the $\mathrm{PH}_{4} \mathrm{X}$ species. These are based on improved natural (localized) orbitals and overcome the large basis set sensitivity that mars Mulliken population analysis.

In this study, we consider these fundamental structural types: the apically substituted TP structure a, the equatorially substituted TP structure e, and the apically substituted SP structure \mathbf{s}. The combination of the atomic number with these symbols represents the corresponding substituted conformation (for example, 3a, 3e, 3s for $\mathrm{PH}_{4} \mathrm{Li}$). For some substituents, other conformations also were investigated, for example, to examine π-bonding effects.

$\mathrm{X}=\mathbf{3}, \mathrm{Li} ; \mathbf{4}, \mathrm{BeH} ; \mathbf{5}, \mathrm{BH}_{2} ; 6, \mathrm{CH}_{3} ; 7, \mathrm{NH}_{2} ; \mathbf{8}, \mathrm{OH} ; \mathbf{9}, \mathrm{F} ; \mathbf{1 1}, \mathrm{Na} ; \mathbf{1 2}$, $\mathrm{MgH} ; 13, \mathrm{AlH}_{3} ; 14, \mathrm{SiH}_{3} ; 15, \mathrm{PH}_{2} ; 16, \mathrm{SH} ; 17, \mathrm{Cl}$

> "Apicophilicity" is a convenient measure of the relative energies of isomers. According to Holmes' recent definition, ${ }^{20}$ the apicophilicity A is defined as $A=E_{(e)}-E_{(a)}$ Apicophilic ligands have positive and apicophobic ligands have negative A values. Similarly, the $E_{\text {s) }}-E_{(a)}$ relative energies characterize the perferences for $S P$ structures. In Tables IV and V the apicophilicity values are given as the relative energy of the e conformation in the second line for each substituent subgroup. $E_{(s)}$ $E_{(a)}$ relative energies are given in the third line of the entry for each substituent.

Results and Discussion

$\mathbf{P H}_{5}$. The trigonal-pyramidal (TP) and square-planar (SP) structures of PH_{5} were optimized with various basis sets (Table I). Optimizations with $3-21 \mathrm{G}\left({ }^{*}\right)$ and $6-31 \mathrm{G}^{*}$ give quite similar geometries, whereas basis sets lacking d functions on phosphorus (such as 3-21G and 6-31G) result in longer $\mathrm{P}-\mathrm{H}_{\mathrm{e}}$ and $\mathrm{P}-\mathrm{H}_{\mathrm{a}}$ distances. As is well-known, the use of basis sets supplemented
with d functions is necessary to obtain satisfactory geometries on second-row molecules, but correlation effects are minimal.
The general conclusion from many studies of phosphorus compounds ${ }^{15,24}$ is that d functions serve as polarization functions. On the basis of NBO analysis, a simpler picture can be drawn of the role of d orbitals in PH_{5}. For the TP structure, the natural charges on $\mathrm{P}, \mathrm{H}_{\mathrm{a}}$, and H_{e} are $0.64,-0.23$, and -0.06 , respectively (Table VI). The phosphorus inner shell $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p natural atomic orbitals (NAO) are fully occupied, but $3 \mathrm{~s}, 3 \mathrm{p}$, and 3 d have occupation numbers of $1.20,3.08$, and 0.08 , respectively. The 3 d (mainly $3 \mathrm{~d}_{x^{2}-y^{2}}$ and $3 \mathrm{~d}_{z^{2}}$) occupancy corresponds to only 1.8% of the total phosphorus valence electrons. This is much less than the 20% required by the conventional $\mathrm{sp}^{3} \mathrm{~d}$ hybridization model. The natural localized molecular orbitals (NLMOs) show the $\mathrm{P}-\mathrm{H}_{\mathrm{a}}$ bond to be polarized toward hydrogen (59% on $\mathrm{H} ; 39 \%$ on P). The d function participation is only 3.3% in the $\mathrm{P}-\mathrm{H}_{\mathrm{a}}$ bond and 1.7% in the $\mathrm{P}-\mathrm{H}_{\mathrm{e}}$ bond. Hence, the $\mathrm{sp}^{3} \mathrm{~d}$ hybridization model does not apply. Actually, the $\mathrm{P}-\mathrm{H}_{\mathrm{a}}$ antibond consists mostly of phosphorus d orbitals. From second-order perturbation theory (NBO analysis of the Fock matrix), the charge delocalization from $\mathrm{P}-\mathrm{H}_{\mathrm{e}}$ to this $\mathrm{P}-\mathrm{H}_{\mathrm{a}}$ antibond contributes $35 \mathrm{kcal} \mathrm{mol}^{-1}$ to the total energy. The d orbital in PH_{5} acts as an acceptor to allow the negatively charged hydrogens to donate electrons to the positively charged phosphorus. This is equivalent to saying that the d function has a polarization effect on phosphorus. In the $C_{40} \mathrm{PH}_{5}$ structure, d orbitals play the same role. The difference is that the negative charge is present largely on the four basal hydrogens rather than on the apical hydrogen.

Frequency calculations show that the $D_{3 h} \mathrm{PH}_{5}$ structure is the energy minimum and the $C_{4 v}$ structure is the transition structure corresponding to the energy maximum in the Berry pseudorotation process. ${ }^{7}$ At various basis set levels, namely $6-31 \mathrm{G}^{*}, 6-31 \mathrm{G}^{* *}$, 6-31G(2d,p) (with two sets of d orbitals on phosphorus), and 6-31G(2df,p) (with an additional f set on P), the energy difference between the two structures is almost constant at about 2.8 kcal mol^{-1}. The electron correlation correction reduces the difference. The MP4/6-31G*+ZPE relative energy ($1.1 \mathrm{kcal} \mathrm{mol}^{-1}$) is similar to that of full CI calculations ($1.2 \mathrm{kcal} \mathrm{mol}^{-1}$)..$^{6 \mathrm{~b}}$ These results calibrate the MP4SDTQ/6-31G*//6-31G* + ZPE theoretical level used in this work. Optimization at the MP2 level gave little change in geometry.

Note that the pentacoordinated phosphorane is thermodynamically unstable relative to phosphine and hydrogen. The TP
structure of PH_{5} is about $58 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than PH_{3} $+\mathrm{H}_{2}$ (Table I). However, the barrier for this decomposition should be about $36 \mathrm{kcal} \mathrm{mol}^{-1}$. . $\mathrm{Hence}, \mathrm{PH}_{5}$ may be an observable metastable species.
$\mathbf{P H}_{4} \mathbf{X}(\mathbf{X}=\mathbf{L i}, \mathbf{N a}, \mathbf{B e H}$, and $\mathbf{M g H})$. Electropositive substituents often produce unusual behavior. For example, lithium and sodium reduce the planar-tetrahedral energy difference in $\mathrm{CH}_{3}-\mathrm{X}$ derivatives significantly. ${ }^{37}$ To our knowledge, there is no prior $a b$ initio theoretical investigation on phosphorus substituted by the electropositive elements of the first and second rows. For acyclic and monocyclic five-coordinate phosphoranes, it is generally believed that the TP conformer is lower in energy compared to SP. We now inquire whether this generalization extends to electropositive ligands.

We find in fact that for $\mathrm{PH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{BeH}, \mathrm{Na}$, and MgH$)$, the SP (s) and TP (a) conformations are energy minima with s being much more stable than \mathbf{a}. For $\mathrm{PH}_{4} \mathrm{Li}$ the \mathbf{s} conformation is the only minimum, and the a (C_{30}) structure is a second-order saddle point (Table II). At MP4/6-31G*//6-31G* + ZPE, the greater stabilities (in $\mathrm{kcal} \mathrm{mol}^{-1}$) of s over a conformers are $\mathrm{Li},-28.4$; $\mathrm{Na},-23.4 ; \mathrm{BeH},-22.8$; and $\mathrm{MgH},-24.8$. These SP structures are the first acyclic phosphoranes which are more stable as the square-pyramidal conformer. The XPH angles in these SP structures range from 101.3° to 102.9°, close to the value of 100.5° at $6-31 \mathrm{G}^{*}$ in $\mathrm{C}_{40} \mathrm{PH}_{5}$. Note that five point charges on the surface of a sphere in a $C_{4 v}$ geometry results in a least repulsion angle of $104.1^{\circ} .^{38}$ It is also noteworthy that the $\mathrm{P}-\mathrm{M}$ bond length in SP is considerably shorter than that in TP. Experimentally, there is a proposed example of the 3 s type of structure (I) obtained by the reaction of the H -spirophosphorane (II, SP structure) with tert-butyllithium. ${ }^{39}$

I

II

An analysis of the TP and SP HOMO's is instructive. The TP HOMO involves a nonbonding or slightly antibonding interaction between phosphorus and the apical ligands, with the larger coefficient associated with the apical ligands. ${ }^{24}$ Thus, the electropositive ligand on the apical position raises the HOMO energy and makes the TP conformation unstable. On the other hand, the HOMO in SP comprises four basal ligands with two nodes, and there is almost no participation by the axial ligand. The electronegativity of the ligand at the axial position does not influence the HOMO. The natural charges on $\mathrm{P}, \mathrm{Li}, \mathrm{H}_{\mathrm{a}}$, and H_{e} are $0.24,0.34,-0.25$, and -0.04 , respectively, in 3a. The two positively charged centers P and Li raise the energy and make the TP structure unstable. Note that the charge on lithium is rather low and that the $\mathrm{P}-\mathrm{Li}$ bond length in this structure, 2.80 \AA, is rather long. The low charge on lithium was confirmed by an integrated projected electron density analysis. This result not only suggests that this structure has an important $\mathrm{H}_{4} \mathrm{P}^{\bullet} \mathrm{Li}{ }^{\bullet}$ character that results from the weakened $\mathrm{P}-\mathrm{Li}$ bond but also implies that a single configuration Hartree-Fock approach may not suffice for this species. The qualitative result, however, is undoubtedly still sound. For the SP structure 3 s , the phosphorus is negatively charged (-0.25) and the lithium is more typically positively charged (0.89). This structure can be considered as a lithium-phosphoranide ion pair. These results imply that the

[^3]relatively small conformational change from SP to TP is accompanied by profound changes in electronic structure.

There are no stationary points corresponding to the equatorially substituted structures. Optimizations starting from a $C_{2 v}$ equatorial structure ended with the SP structure. The structures in Table VII were only partially optimized by setting two $\mathrm{XPH}_{\mathrm{a}}$ angles at 90°. In the e conformation, the $\mathrm{P}-\mathrm{M}$ bond is longer than that in SP but much shorter than that in apically substituted TP. The charge distribution is similar to the s conformation. As a rough comparison, $\mathrm{Li}_{3} \mathrm{P}$ and $\mathrm{Na}_{3} \mathrm{P}$ have been shown to have structures of the Na_{3} As type. In crystals of these compounds the \mathbf{P} atoms are surrounded by five metal atoms in a trigonal-bipyramidal configuration. The $\mathrm{P}-\mathrm{Na}$ bond length at the equatorial position in $\mathrm{Na}_{3} \mathrm{P}$ is $2.88 \AA$, which is not too much longer than the value of $2.70 \AA$ in 11 e . The $\mathrm{P}-\mathrm{Na}$ bond length at the axial position in $\mathrm{Na}_{3} \mathrm{P}$ is $2.93 \AA$, which is much shorter than the $3.27 \AA$ in $11 \mathrm{a} .{ }^{40}$ Relative energies show that $\mathrm{PH}_{4} \mathrm{X}_{\mathrm{e}}$ is about $20 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than $\mathrm{PH}_{4} \mathrm{X}_{\mathrm{a}}$. Therefore, if ring structures block the formation of the SP conformation, the equatorial structure would be the preferred conformation.

A good example has been provided by Ross and Martin. ${ }^{41}$ They reported a stable monocyclic triarylalkoxyphosphorane and a monocyclic phosphoranide anion. The slowness of the proton exchange between III and IV clearly indicates the equatorial preference of the $\mathrm{P}-\mathrm{Li}$ bond over the apical position.

Some bicyclic phosphoranes with Li cation in the equatorial position have been reported. ${ }^{42}$ Most recently, the X-ray crystal structure was reported ${ }^{42 \mathrm{c}}$ of THF-solvated lithium cyclenphosphoranide, $[\mathrm{Li}(\mathrm{THF}) \text { cyclenP }]_{x}$, via deprotonation of the PH group of the cyclen V with butyllithium. This is the first X-ray structural determination of a deprotonated phosphoranide. Because of the ring structure in the ligands, this Li phosphoranide cannot adopt an SP structure. The lithium compound has a polymeric structure in which each lithium is coordinated to two apical nitrogens in different cyclen moieties rather than to phosphorus. The equatorial $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angle in the phosphoranide is considerably smaller than that in the neutral compound, indicating the trend toward the SP structure. From the discussion above, it can be expected that for a monomeric phosphoranide salt that is free from ring strain the SP structure would be the favored conformation.

V
$\mathbf{P H}_{4} \mathbf{B H}_{2}$ and $\mathbf{P H}_{4} \mathbf{A l H}_{2}$. There are several conformations to be considered for $\mathrm{PH}_{4} \mathrm{X}$ in which $\mathrm{X}=\mathrm{YH}_{2}$. For $\mathrm{X}=\mathrm{BH}_{2}$ and AlH_{2} the substituent groups are planar (or nearly planar) but can have several types of orientation.
$\mathrm{PH}_{4} \mathrm{BH}_{2}$ is found computationally to be a flexible species. The apical structure $\mathbf{5 a}_{\|}$with a planar BH_{2} lying in the C_{s} plane of

[^4]the PH_{4} group (\|) has nearly the same energy as $\mathbf{5 a} \mathbf{a}_{\downarrow}$ in which the essentially planar BH_{2} is rotated 90° with respect to the position in $5 a_{\|}$. The structure $5 a_{\|}$is a transition state with an imaginary frequency of $73.7 \mathrm{i} \mathrm{cm}^{-1}$. The structure $5 a_{\perp}$ is an energy minimum. The equatorial structure $5 \mathbf{e}_{\|}, 13.0 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than $5 a_{\perp}$, is the lowest energy stationary point on the $\mathrm{PH}_{4} \mathrm{BH}_{2}$ potential surface. In $5 e_{\|}, \mathrm{BH}_{2}$ lies in the equatorial plane. The optimal $\mathrm{H}_{\mathrm{a}} \mathrm{PB}$ angle is 91.06° and is slightly greater than 90°. If the planar BH_{2} is rotated by 90° and the angle $\mathrm{H}_{2} \mathrm{~PB}$ is kept at 90° during the optimization, the resulting structure $\mathbf{5} \mathbf{e}_{\perp}$ is $7.2 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{5 \mathbf { e } _ { \| }}$ at our highest level (Table IV). The optimization of this equatorial structure with only C_{s} symmetry results in a $\left(\mathrm{PH}_{3}\right)\left(\mathrm{BH}_{3}\right)$ complex with staggered C_{30} symmetry that is more stable than $\mathbf{5} \mathbf{e}_{\|}$by $65.6 \mathrm{kcal} \mathrm{mol}^{-1}$ at 6-31G*. This complex is simply a Lewis acid-base complex between BH_{3} and PH_{3} and is not a phosphorane.

The π conjugation effect in the $\mathbf{5} \mathbf{e}_{\|}$conformation has already been rationalized by McDowell and Streitwieser. ${ }^{24}$ On the basis of NBO analysis, the apical hydrogen in $\mathbf{5} \mathbf{e}_{\|}$has a charge of -0.27 . The π effect comes from the electron delocalization of the $\mathrm{P}-\mathrm{H}_{e}$ σ bond to antibonding P-B. Second-order perturbation theory estimates this charge donation to be about $16.9 \mathrm{kcal} \mathrm{mol}^{-1}$. The larger $\mathrm{H}_{\mathrm{a}} \mathrm{PB}$ angle favors this charge donation. This kind of charge transfer can also be regarded as an anomeric effect. It has been demonstrated that the anomeric effect is strongest at $\mathrm{C}, \mathrm{N}, \mathrm{P}$, and S centers. ${ }^{43}$
The SP structure 5 s is only $3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than $5 \mathbf{e}_{\|}$. The $\mathrm{P}-\mathrm{B}$ bond length in $\mathrm{PH}_{4} \mathrm{BH}_{2}$ changes but little among the various isomers. No $\mathrm{B}-\mathrm{P}$ bond length data have been reported for pentacoordinate phosphoranes. In the recently published ${ }^{44}$ structure of $\mathrm{P}_{2} \mathrm{~B}_{4} \mathrm{Cl}_{4}, \mathrm{VI}, \mathrm{P}$ assumes an inverted tetracoordinated geometry with a B-P bond length of $2.0 \AA$.

vI
$\mathrm{PH}_{4} \mathrm{~A} \mathrm{H}_{2}$ behaves quite similarly to $\mathrm{PH}_{4} \mathrm{BH}_{2}$. The equatorial isomer, $\mathbf{1 3} \mathbf{e}_{\|}$, is the global minimum. The next most favorable structure, the SP conformation, $\mathbf{1 3 \mathrm { s }}$, is only $3.3 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{1 3} e_{\|}$, but $\mathbf{1 3 s}$ is a transition state as is the apically substituted 13a ${ }^{\mid}$, which has the highest energy. No corresponding

[^5]Table VI. Natural Charges ${ }^{a}$ of $\mathrm{PH}_{4} \mathrm{X}$

X	no.	P	YH_{n}	H_{3}	H_{e}
H	1 a	0.64		-0.23	-0.06
	1 s	0.61		-0.01	-0.15
Li	3a	0.24	0.34	-0.25	-0.04
	3e	-0.14	0.84	-0.31	-0.04
	3s	-0.25	0.89		-0.16
BH_{2}	$5{ }_{\text {d }}$	0.53	0.08	-0.27	-0.04
CH_{3}	6a	0.84	-0.41	-0.22	-0.00
NH_{2}	$7 \mathrm{e}_{\perp}$	1.07	0.44	-0.22	-0.00
	$7{ }_{\text {e }}$	1.08	0.47	-0.22	-0.00
PH_{2}	$15 e_{\perp}$	0.60	-0.13	-0.17	-0.06
	$15 e^{\prime \prime}$	0.55	-0.00	-0.23	-0.05'
					-0.04"
OH	8 a	1.04	-0.64	-0.21	-0.07'
					-0.05
	$8 \mathbf{e r}_{\perp}$	1.13	-0.56	-0.22 ${ }^{\prime}$	-0.09
				-0.16 ${ }^{\prime \prime}$	
SH	16a	0.66	-0.48	-0.20	$0.01^{\prime \prime}$
					0.00^{\prime}
	$16{ }_{\perp}$	0.68	-0.23	-0.17^{\prime}	-0.06
				-0.17 ${ }^{\prime \prime}$	
F	9a	1.07	-0.70	-0.21	-0.05
	9 e	1.13	-0.65	-0.15	-0.09
Cl	17a	0.73	-0.76	-0.11	0.04
	17e	0.73	-0.93	0.10	0.00

${ }^{a}$ Natural charges were calculated at $6-31 G^{*} / / 6-31 G^{*}$. See text for the corresponding structures. Primes and double primes refer to nonequivalent hydrogens as indicated in the structural figures.
$\mathbf{a}_{\|}$stationary point was found for $\mathrm{PH}_{4} \mathrm{AlH}_{2} . \quad \mathrm{PH}_{4} \mathrm{BH}_{2}$ and $\mathrm{PH}_{4} \mathrm{AlH}_{2}$ are the "turning points" for the first- and second-row series, respectively. When more electronegative groups are present, the TP structures are more stable than the SP isomers.
$\mathrm{PH}_{4} \mathrm{CH}_{3}$ and $\mathrm{PH}_{4} \mathrm{SiH}_{3}$. The geometries of $\mathrm{PH}_{4} \mathrm{CH}_{3}$ and $\mathrm{PH}_{4} \mathrm{SiH}_{3}$ are summarized in Table VIII. Three conformations (\mathbf{a}, \mathbf{e}, and \mathbf{s}) were calculated.

$Y=C, S i$
Both the apical and equatorial species are minima. For $\mathbf{6 a}$ and 14a, YH_{3} is staggered with resect to $\mathrm{P}\left(\mathrm{H}_{\mathrm{e}}\right)_{3}$. For $\mathbf{6 e}$ and $\mathbf{1 4 e}, \mathrm{YH}_{3}$ is also staggered with respect to $\mathrm{P}\left(\mathrm{H}_{\mathrm{e}}\right)_{2}$. The $\mathrm{P}-\mathrm{C}$ bond length $(1.847 \AA)$ in $6 e$ is longer than in $\mathrm{CH}_{3} \mathrm{PF}_{4}(1.780 \AA),{ }^{45 \mathrm{a}}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PF}_{3}(1.798 \AA)^{45 \mathrm{a}}$ but close to that in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~F}_{2}(1.813 \AA){ }^{45 \mathrm{~b}}$ At our highest level the apicophilicity of the CH_{3} group is only $-0.9 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, the CH_{3} group in $\mathrm{PH}_{4} \mathrm{CH}_{3}$ has relatively little preference for either position. The apicophilicity of -7.0 kcal mol^{-1} given by Holmes ${ }^{23}$ may be due to the steric interactions and ring strain in more highly substituted phosphorus. In contrast to CH_{3}, the SiH_{3} group is quite apicophobic; the A value is -8.6 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ at our highest level. The $\mathbf{6 s}$ and $\mathbf{1 4 s}$ structures are both second-order saddle points; 14s is almost as stable as $\mathbf{1 4 e}$ and $\mathbf{6 s}$ is only $3.2 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than 6 a . The $\mathrm{P}-\mathrm{C}$ bond length (1.832 \AA) in $\mathbf{6 s}$ is quite close to that in a number of spirocyclic phosphoranes (SP). For example, in an adamantane-substituted spirocyclic phosphorane, the P-C bond length is $1.836 \AA .{ }^{46}$
$\mathbf{P H}_{4} \mathbf{N H}_{2}$ and $\mathrm{PH}_{4} \mathbf{P H}_{2}$. The geometries of the $\mathrm{PH}_{4} \mathrm{NH}_{2}$ isomers are listed in Table IX. In addition to the conformations considered for $\mathrm{PH}_{4} \mathrm{BH}_{2}$ and $\mathrm{PH}_{4} \mathrm{AlH}_{2}$, in which the substituents are planar, we must now also consider conformations with pyramidal groups.

[^6]

In the apical position, the pyramidal NH_{2} structure $7 \mathrm{a}^{\prime}$ is 1.3 kcal mol^{-1} more stable than the planar NH_{2} structure $7 \mathbf{a}_{\|}$. Note that the pyramidal NH_{2}, as expected, is staggered with respect to an equatorial H . In the equatorial position the structure $7 \mathrm{e}_{\perp}$, in which NH_{2} is planar and the nitrogen lone pair is in the equatorial plane, is the global minimum, probably because of π-bonding effects. With this isomer, the NH_{2} apicophilicity is $-7.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Holmes' apicophilicity of NH_{2} was -6.8 kcal mol^{-1} when the π-bonding effect of NH_{2} in the equatorial position was included. ${ }^{23}$ Structure $\mathbf{7} \mathbf{e}_{\|}$, with a planar NH_{2} lying in the equatorial plane, is $24.6 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than $7 \mathrm{e}_{\perp}$. This result is essentially the same as Veillard's value (25 kcal $\left.\mathrm{mol}^{-1}\right) .^{13}$ If the NH_{2} in this position is allowed to adopt a pyramidal conformation ($7 \mathrm{e}^{\prime}$), the energy is still $18.1 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than that of $\mathbf{7} \mathbf{e}_{\perp}$. Note in this structure that the NH_{2} group is staggered with respect to an H_{a} rather than a farther H_{e}. A SP structure 7 s with $C_{2 v}$ symmetry can be located at $3-21 G\left(^{*}\right)$ but at $6-31 \mathrm{G}^{*}$ it converts to structure $7 \mathrm{e}_{\perp}$.

Although the bonding in $\mathrm{PH}_{4} \mathrm{NH}_{2}$ has been discussed by many authors, ${ }^{11,13,24}$ NBO analysis provides a simple interpretation for the π-bonding effect in equatorial $\mathrm{PH}_{4} \mathrm{NH}_{2}$. Consider the two $7 \mathbf{e}_{\perp}$ and $7 \mathrm{e}_{\|}$conformers. In $7 \mathrm{e}_{\perp}$, the lone pair on the nitrogen delocalizes its electron to $\sigma^{*}\left(\mathrm{P}-\mathrm{H}_{\mathrm{e}}\right)$. The second-order perturbation energy contribution corresponding to this hyperconjugation is $15.2 \mathrm{kcal} \mathrm{mol}^{-1}$. In $7 \mathbf{e}_{\|}$, the nitrogen lone pair delocalizes to $\sigma_{(\mathrm{P}-\mathrm{Ha})}$. The $\mathrm{n} \rightarrow \sigma_{(\mathrm{P}-\mathrm{Ha})}$. interaction is much less, only 3.3 kcal mol^{-1} from NBO analysis. The total hyperconjugation energy difference between $7 \mathbf{e}_{\perp}$ and $7 \mathbf{e}_{\|}(15.4 \times 2-3.3 \times 2=24.2 \mathrm{kcal}$ mol^{-1}) is in excellent agreement with the relative energy (24.6 $\mathrm{kcal} \mathrm{mol}^{-1}$) at $6-31 \mathrm{G}^{*}$. Corresponding to the anomeric effect, the $\mathrm{P}-\mathrm{N}$ bond length is much shorter in $7 \mathbf{e}_{\perp}(1.675 \AA$) than in $7 \mathbf{e}$ ($1.713 \AA$). Moreover, if the NBO's of $\sigma_{(\mathrm{P}-\mathrm{He})}$ and $\sigma_{(\mathrm{P}-\mathrm{Ha})} *$ are deleted from the basis sets in the calculations, $7 \mathbf{e}_{\perp}$ and $7 \mathbf{e}_{\|}$become degenerate. In other words, the rotation barrier of $\mathrm{P}-\mathrm{NH}_{2}$ disappears after deleting the $\sigma_{(\mathrm{P}-\mathrm{He})^{*}}$ and $\sigma_{(\mathrm{P}-\mathrm{Ha})^{*}}$. Therefore, the π-effect mainly comes from the anomeric effect in which the lone pair of the substituent interacts with the $\mathrm{P}-\mathrm{H}$ antibonding σ^{*} (n $\rightarrow \sigma^{*}$).

In contrast to the π-bonding effect of an NH_{2} group, a PH_{2} group strongly prefers the pyramidal conformation. In the apical position, the planar PH_{2} structure $\mathbf{1 5}_{\|}$is a transition state 23.1 $\mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the pyramidal 15a' (analogous to $7 \mathrm{a}^{\prime}$), a local minimum. In the equatorial position, the lowest energy conformation is $\mathbf{1 5 e ^ { \prime \prime }}$ with a pyramidal PH_{2}. None of the other equatorial stationary points is a local minimum. The alternative structure $\mathbf{1 5 e}^{\prime}$ in which the PH_{2} group is staggered with respect to H_{a} is the transition state for rotation of pyramidal PH_{2} group in the equatorial position. The $4.0 \mathrm{kcal} \mathrm{mol}^{-1}$ rotation barrier is much lower than the NH_{2} rotation. In the two planar equatorial conformations ($C_{2 v}$), the PH_{2} plane is coplanar with the equatorial plane in $15 \mathrm{e}_{\|}$and orthogonal to the equatorial plane in $15 \mathrm{e}_{\perp}$. These conformers, $\mathbf{1 5 e}_{\|}$and $15 e_{\perp}$, are 40.6 and $20.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, less stable than $15 \mathbf{e}^{\prime \prime}$. The $20.3 \mathrm{kcal} \mathrm{mol}^{-1}$ energy difference between $15 e_{\|}$and $15 e_{\perp}$ does demonstrate π-bonding participation in the $15 \mathrm{e}_{+}$conformer that is only little less than that in $\mathrm{PH}_{4} \mathrm{NH}_{2}$ case. The substituted SP structure 15 s corresponds to a stationary point at $3-21 \mathrm{G}\left(^{*}\right)$ but not at $6-31 \mathrm{G}^{*}$.

Structure VII is the first X-ray structure of a phosphorane with a phosphorus substituent that is not part of a ring system. ${ }^{46}$ In VIl the $\mathrm{Ph}_{2} \mathrm{P}$ group is twisted so that the phosphorus lone pair is directed between the apical and equatorial orientations of the
phosphorane moiety and does not correspond to either $\mathbf{1 5 e}^{\prime}$ or $\mathbf{1 5 e ^ { \prime \prime }}$. Unfortunately, the spiro four-membered rings introduce such distortion that VII is not a good model system for unstrained phosphoranes. Nevertheless, VII does show that the phosphino group is pyramidal, and the observed P-P bond length of 2.214 \AA is close to our calculated value of $2.211 \AA$ in $15 \mathbf{e}^{\prime \prime}$.

VII
$\mathrm{PH}_{4} \mathrm{OH}$ and $\mathrm{PH}_{4} \mathrm{SH}$. Four possible conformations investigated are as follows:

$Y=0, S$
In the equatorial conformations the PYH plane can be either perpendicular (\perp) or coplanar ($\|$) with respect to the equatorial plane. Conformations 8a and 16a have H-Y staggered with respect to $\mathrm{H}_{e} \mathrm{PH}_{\mathrm{e}}$. The a and \mathbf{e}_{\perp} structures were fully characterized by frequency calculations and are minima on the PES. At our highest level, the apicophilicities of OH and SH are 0.4 and $-0.1 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. Thus, if ring strain and steric effects are omitted, OH and SH groups have little positional preference. The empirical OH apicophilicity value of Holmes, ${ }^{23}$ $1.3 \mathrm{kcal} \mathrm{mol}^{-1}$, is slightly higher than our value of 0.4 . Note the importance in these cases of using a polarized basis set and including some electron correlation. For example, at the SCF level, the apicophilicity of SH is $3.1 \mathrm{kcal} \mathrm{mol}^{-1}$ at $3-21 \mathrm{G}\left(^{*}\right)$ and 3.0 kcal mol^{-1} at $6-31 \mathrm{G}^{*}$. Electron correlation changes the sign of the apicophilicity. At MP4SDTQ/6-31G*, the value is -0.7 kcal mol^{-1}. After the ZPE correction, the final value is $-0.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

The other conformations are stationary points that are not minima on the PES. Rotating the $\mathrm{H}-\mathrm{Y}$ group by 90° results in conformations $8 \mathbf{e}_{\|}$and $\mathbf{1 6} \mathbf{e}_{\|}$, which are 11.2 and $8.9 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than $8 e_{\perp}$ and $16 e_{\perp}$, respectively. The bond angles at oxygen and at sulfur in $\mathrm{PH}_{4} \mathrm{OH}$ and $\mathrm{PH}_{4} \mathrm{SH}$ are instructive. The POH angles are 114.4° in $8 \mathrm{a}, 112.0^{\circ}$ in $8 \mathbf{e}_{\perp}$, and 115.8° in $\mathbf{8 3}_{\|}$; the oxygen is approximately sp^{3} hybridized. On the other hand, the PSH angle is 100.4° in $16 \mathrm{a}, 99.5^{\circ}$ in $16 \mathrm{e}_{\perp}$, and 94.3° in $\mathbf{1 6 e} e_{\|}$; the sulfur bonds, as expected, have much greater p character. Again, the rotation barrier arises from the hyperconjugation of the Y lone pairs with the $\mathrm{P}-\mathrm{H}$ antibonding σ^{*}. The OH substituent exhibits more anomeric effect than the SH substituent. For example, in $8 \mathbf{e}_{\perp}$ the $\mathrm{n} \rightarrow \sigma^{*}$ interaction corresponds to $13.9 \mathrm{kcal} \mathrm{mol}^{-1}$, whereas in $\mathbf{1 6} \mathbf{e}_{\perp}$ the value decreases to 10.1 $\mathrm{kcal} \mathrm{mol}^{-1}$.
The conformational preferences of $8 e_{\perp}$ and $16 e_{\perp}$ over $8 e_{\mid}$and $\mathbf{1 6 e}_{\mid l}$ have important chemical significance. The "ring strain" rule states: "Four- or five-membered cyclic systems preferentially span axial-equatorial position". ${ }^{22}$ Certainly, ring strain is one of the factors. But for oxygen- and sulfur-containing rings, the \perp rather than the $\|$ conformational preference of an equatorial $\mathrm{P}-\mathrm{O}-\mathrm{R}$ or $\mathrm{P}-\mathrm{S}-\mathrm{R}$ bond is another important factor responsible for the ax-ial-equatorial conformation. This can be accounted for as follows. Strain-free OH and SH ligands have little positional preference. But in a small-membered diequatorial ring, the OR and SR groups have to assume unfavorable conformations in which the OR or SR rings are coplanar with the equatorial plane. This effect contributes as instability of about $11 \mathrm{kcal}_{\mathrm{mol}^{-1}}$ for each oxygen and about $9 \mathrm{kcal} \mathrm{mol}^{-1}$ for each sulfur. Moreover, it has been shown that six- or larger-membered rings also prefer axialequatorial conformations. ${ }^{49}$ This conformational preference effect

Table VII. Optimized HF/6-31G* Geometries ${ }^{a}$ of $\mathrm{PH}_{4} \mathrm{X}(\mathrm{X}=\mathrm{Li}, \mathrm{Na}, \mathrm{BeH}, \mathrm{MgH}, \mathrm{F}$, and Cl$)$

X	no.	sym	P-X	$\mathrm{P}-\mathrm{H}_{\mathrm{a}}$	$\mathrm{P}-\mathrm{H}_{\mathrm{e}}$	$\mathrm{YPH}_{\text {a }}$	YPH_{e}	Y-H
Li	3 a	$C_{3 v}$	2.802	1.477	1.419		92.60	
	3 e	$C_{2 v}$	2.386	1.553	1.398	$90.00^{\text {b }}$	119.96	
	3 s	C_{40}	2.376		1.457		102.72	
Na	11a	C_{30}	3.274	1.461	1.397		89.19	
	11e	C_{20}	2.704	1.555	1.398	$90.00^{\text {b }}$	121.78	
	11s	C_{40}	2.677		1.458		102.88	
BeH	4a	C_{30}	2.252	1.481	1.424		92.69	1.347
	4e	C_{20}	2.103	1.498	1.407	90.00^{6}	115.52	1.330
	4 s	C_{40}	2.090		1.448		101.27	1.329
MgH	12a	C_{30}	2.862	1.478	1.404		91.48	1.759
	12e	$C_{2 v}$	2.508	1.502	1.408	90.00^{6}	115.46	1.714
	12s	$C_{4 v}$	2.481		1.450		101.46	1.710
F	9 a	C_{30}	1.657	1.440	1.386		89.31	
	9 e	$C_{2 v}$	1.623	1.414	1.403	84.54	128.44	
	9s	C_{40}	1.565		1.431		101.35	
Cl	17a	C_{30}	2.495	1.412	1.373		81.56	
	17e	$C_{2 v}$	2.975	1.369	1.385	58.91	128.09	
	17s	$C_{4 v}$	2.024		1.432		100.51	

${ }^{a}$ Bond lengths in \AA, angles in deg. ${ }^{b}$ Angles fixed for optimization.

Table VIII. Optimized HF/6-31G* Geometries ${ }^{a}$ of $\mathrm{PH}_{4} \mathrm{X}\left(\mathrm{X}=\mathrm{CH}_{3}, \mathrm{SiH}_{3}, \mathrm{OH}\right.$, and SH$)$

X	no.	sym	$\mathrm{P}-\mathrm{Y}$	$\mathrm{P}-\mathrm{Ha}_{\mathrm{a}}$	$\mathrm{P}-\mathrm{He}_{\mathrm{e}}$	$\mathrm{YPH}_{\mathrm{a}}$	YPHe	θ	$\mathrm{He}_{\mathrm{e}} \mathrm{PH}_{e}$	
CH_{3}	6 a	$C_{3 v}$	1.904	1.464	1.409		91.13			
	6 e	C_{s}	1.847	1.473^{\prime}	1.405	$88.93{ }^{\prime}$		$91.08^{\prime \prime}$	118.97	
				$1.468^{\prime \prime}$		$92.13^{\prime \prime}$				
	65	C_{s}	1.832		1.442^{\prime}		102.97 ${ }^{\prime}$		87.42^{\prime}	
					1.442^{\prime}		$100.83^{\prime \prime}$		$87.74^{\prime \prime}$	
SiH_{3}	$14 a$		2.407	1.462	1.409		90.52			
	$14 \mathrm{e}$	C_{s}	2.275	1.483^{\prime}	1.410	95.29^{\prime}		$91.67^{\prime \prime}$	121.98	
				$1.473^{\prime \prime}$		$89.54^{\prime \prime}$				
	14s	C_{s}	2.265		1.443^{\prime}		102.45		88.03^{\prime}	
					$1.444^{\prime \prime}$		99.32'		87.86"	
OH	8a	C_{s}	1.704	1.450	1.389^{\prime}		89.41^{\prime}	89.00	$116.21^{\prime \prime}$	
					$1.395^{\prime \prime}$		$92.74{ }^{\prime \prime}$			
	$8 \mathbf{e}_{\perp}$	C_{s}	1.644	1.446^{\prime}	1.403	87.75'		89.98^{\prime}	104.76	
				$1.421^{\prime \prime}$		$85.05^{\prime \prime}$				
	$8 \mathrm{e}_{\\|}$	C_{s}	1.665	1.431	1.410^{\prime}	87.55	130.94^{\prime}			
					1.403 ${ }^{\prime \prime}$		$122.91^{\prime \prime}$			
	8 s	C_{s}	1.614		1.442^{\prime}		102.84 ${ }^{\prime \prime}$		87.03'	
					$1.430^{\prime \prime}$		101.44"		88.23"	
SH	16a	C_{s}	2.389	1.435	1.384^{\prime}		$83.01^{\prime \prime}$	84.00	117.87 ${ }^{\prime \prime}$	
					$1.382^{\prime \prime}$		$98.69^{\prime \prime}$			
	$16 e_{\perp}$	C_{s}	2.152	1.436^{\prime}	1.403	88.67^{\prime}		91.56	107.58	
				$1.435^{\prime \prime}$		$84.14^{\prime \prime}$				
	$16 e_{\\|}$	C_{s}	2.242	1.425	1.410^{\prime}	86.83	131.71 ${ }^{\prime}$			
					$1.404^{\prime \prime}$		119.25"			
	16 s	C_{s}	2.105		$1.438^{\prime \prime}$		101.55'		$88.10^{\prime \prime}$	
					$1.435^{\prime \prime}$		100.25 ${ }^{\prime \prime}$		88.25 ${ }^{\prime \prime}$	

[^7] to nonequivalent hydrogens as indicated in the structural figures.
at the equatorial position must be more important than the ring strain in such cases.
$\mathrm{PH}_{4} \mathrm{~F}$ and $\mathrm{PH}_{4} \mathrm{Cl}$. The equatorially substituted structures 9 e and 17 e are not minima on the PES but are transition states between the two equivalent apically substituted isomers. The P-F bond $(1.623 \AA)$ in 9 e is much longer than that in $\mathrm{CH}_{3} \mathrm{PF}_{4}(1.543$ \AA) or in $\mathrm{HPF}_{4}(1.55 \AA) .^{50}$ In 17e, P and Cl have natural charges of +0.73 and -0.93 , respectively. This structure is better considered as a $\mathrm{PH}_{4}{ }^{+} \mathrm{Cl}^{-}$, phosphonium chloride edge-associated ion pair, isomer even though it is not an energy minimum. The PES surface is rather flat with respect to the P-Cl bond distance, and its character is sensitive to the basis set level. At the Hartree-Fock level, the standard $6-31 \mathrm{G}^{*}$ basis set gives a single minimum corresponding to a phosphonium chloride structure. A comparable

[^8]computation with two sets of d orbitals on phosphorus (exponents of 0.22 and 0.77 compared to the single exponent of 0.55 in $6-31 \mathrm{G}^{*}$) gave a second minimum corresponding to a phosphorane structure.

The apically substituted structures 9 a and 17 a are energy minima with bond lengths similar to experimental values. Note that \mathbf{P} has a higher natural charge in $9 \mathbf{a}(+1.07)$ than in $\mathbf{1 7 a}$ $(+0.73)$. Structures 9 s and 17 s are transition states, much higher in energy than 9 a and 17a, respectively. The apicophilicities of F and Cl have been calculated, compared, and discussed based on $\mathrm{PH}_{4} \mathrm{X}$ structures, ${ }^{20,24}$ but such treatments are clearly not appropriate because of the high degree of ion pair character in the equatorial conformers, $\mathrm{PH}_{4} \mathrm{~F}(9 \mathrm{e})$ and $\mathrm{PH}_{4} \mathrm{Cl}(17 \mathrm{e})$. Experimentally, the evidence suggests that both ionic and phosphorane forms can exist for chlorophosphoranes and fluorophosphoranes. ${ }^{51}$ For example, tetraphenylfluorophosphorane exists as an ionic

[^9]Table IX. Optimized HF/6-31G* Geometries ${ }^{a}$ of $\mathrm{PH}_{4} \mathrm{X}\left(\mathrm{X}=\mathrm{BH}_{2}, \mathrm{AlH}_{2}, \mathrm{NH}_{2}\right.$, and $\left.\mathrm{PH}_{2}\right)$

X	no.	sym	P-Y	$\mathrm{P}-\mathrm{Ha}_{\mathrm{a}}$	$\mathrm{P}-\mathrm{He}_{\mathrm{e}}$	$\mathrm{YPH}_{\mathrm{a}}$	$\mathrm{YPH}_{\mathrm{e}}$	$\mathrm{H}_{\mathrm{e}} \mathrm{PH}_{\mathrm{e}}$	$\mathrm{He}_{\text {e }} \mathrm{PH}_{\mathrm{a}}$	
BH_{2}	$5 a_{\perp}$	C_{s}	2.020	1.472	1.437^{\prime}		88.85^{\prime}	118.44 ${ }^{\prime \prime}$	88.03 ${ }^{\prime}$	
					$1.418^{\prime \prime}$		$93.19^{\prime \prime}$			
	$5{ }_{\text {, }}$	$C_{2 v}$	1.923	1.501	1.401	91.06	119.28			
	5 s	C_{20}	1.947		1.445		101.25			
	$5 a_{\\|}$	C_{s}	2.021	1.472	$1.416^{\prime \prime}$		$94.22^{\prime \prime}$	$120.39^{\prime \prime}$	88.45^{\prime}	
					$1.425^{\prime \prime}$		$90.46^{\prime \prime}$			
AlH_{2}	$13 \mathbf{a}_{\\|}$	C_{s}	2.553	1.468	1.420^{\prime}		91.45^{\prime}	118.93'	$88.04{ }^{\prime}$	
					$1.414^{\prime \prime}$		$91.84^{\prime \prime}$			
	$13{ }_{\text {\| }}$	$C_{2 v}$	2.362	1.475	1.424	96.98	116.75			
	13s	$C_{2 v}$	2.365		1.447		101.11			
NH_{2}	$7 \mathbf{a}^{\prime}$	C_{s}	1.779	1.459	$\begin{aligned} & 1.405^{\prime} \\ & 1.206^{\prime \prime} \end{aligned}$		94.25^{\prime}	123.49	85.75	
					$\begin{aligned} & 1.396^{\prime \prime} \\ & 1.403^{\prime} \end{aligned}$		$89.60^{\prime \prime}$			
	7a	C_{s}	1.757	1.463	$\begin{aligned} & 1.403^{\prime} \\ & 1.396^{\prime \prime} \end{aligned}$		$\begin{aligned} & 87.10^{\prime} \\ & 94.06^{\prime \prime} \end{aligned}$	$118.23^{\prime \prime}$	88.48^{\prime}	
	$7 \mathbf{e}_{\perp}$	$C_{2 v}$	1.675	1.449	1.405		121.82			
	$\begin{aligned} & 7 e_{11}^{1} \\ & 7 \mathrm{e}^{\prime} \end{aligned}$	$\begin{aligned} & C_{2 v} \\ & C_{s} \end{aligned}$	$\begin{aligned} & 1.713 \\ & 1.752 \end{aligned}$	1.448	1.441	91.23	120.64			
				$\begin{aligned} & 1.464^{\prime} \\ & 1.436^{\prime \prime} \end{aligned}$	1.407	$\begin{aligned} & 89.12^{\prime \prime} \\ & 90.25^{\prime \prime} \end{aligned}$		111.63		
PH_{2}	$15 a^{\prime}$	C_{s}	2.391	1.452	1.398^{\prime}		91.12^{\prime}	$120.55^{\prime \prime}$	90.71^{\prime}	
					$1.397^{\prime \prime}$		$90.25^{\prime \prime}$			
	$15 a_{\\|}$	C_{s}	2.700	1.414	1.373^{\prime}		77.00^{\prime}	$120.84^{\prime \prime}$		
					$1.371^{\prime \prime}$		83.15 ${ }^{\prime \prime}$			
	$15 e_{\perp}$	$C_{2 v}$	2.165	1.440	1.405	86.07	121.70			
	$15 \mathrm{e}^{\prime}$	$C_{2 v}$	2.336	1.416	1.410	87.21	121.26			
	$15 \mathrm{e}^{\prime \prime}$	C_{s}	2.221	1.464	$\begin{aligned} & 1.405^{\prime} \\ & 1.402^{\prime \prime} \end{aligned}$	89.13	$\begin{aligned} & 119.68^{\prime} \\ & 125.93^{\prime \prime} \end{aligned}$			
	$15 \mathrm{e}^{\prime}$	C_{s}	2.261	$\begin{aligned} & 1.460^{\prime} \\ & 1.456^{\prime \prime} \end{aligned}$	1.408	$\begin{aligned} & 90.08^{\prime} \\ & 90.04^{\prime \prime} \end{aligned}$		119.46		

[^10]

Figure 1. Correlation of energy differences between SP and TP a conformations and electronegativities.
monomer, as an apically substituted molecular monomer, and as a dimer. ${ }^{52}$.
The HF structure of 17a depends somewhat on the basis set used. A change in the phosphorus d exponent in $6-31 G^{*}$ from that normally used, 0.55 to 0.47 , results in a shortening of the $\mathrm{P}-\mathrm{Cl}$ bond to $2.459 \AA$. The use of two sets of d orbitals as above produced a further shortening to $2.422 \AA$ with only small changes in the $\mathrm{P}-\mathrm{H}$ bonds. Analysis of the molecular orbitals show small increases in the contributions of the more diffuse d functions to the HOMO and to the antibonding π-molecular orbitals; the smaller d exponents promote polarization of electron density in the PH_{4} group away from the negative chlorine.

Relative Energy Correlation. The electronegativity rule says that the most electronegative groups prefer apical locations. ${ }^{21}$ Holmes's apicophilicities do indeed vary almost linearly with electronegativity. ${ }^{23}$ As discussed above, inductive effects dominate in the \mathbf{a} and \mathbf{s} conformations. Hence, the energy differences between \mathbf{s} and a conformations should correlate with the electronegativities, and Figure 1 shows this to be the case. Note,

Figure 2. Correlation of energy differences between TP a and econformations (apicophilicities) and electronegativities.
however, that first- and second-row groups show different correlation lines

Apicophilicities, the energy difference between a and econformations, of second-row groups also correlate linearly with electronegativities (Figure 2). Since the equatorial SH group follows this correlation, π-effects must be negligible. Indeed, the effects of the second-row groups in both a and e conformations are dominated by inductive effects. In contrast, many of the apicophilicities of the first-row groups do not correlate with electronegativities. In Figure 2, the lower points for NH_{2} and OH are far from the correlation line. However, the inductive and π-contributions to apicophilicity can be dissected. The π-effect can be largely eliminated by a 90° rotation of the NH_{2} and OH substituents. In this way, the inductive apicophilicity contributions are $10.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for NH_{2} (from $7 \mathrm{e}^{\prime}$) and $11.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for OH (from $8 \mathbf{e}_{\|}$). The resulting inductive apicophilicity does correlate linearly with electronegativities (Figure 2, upper points). Note that BH_{2} also falls off the line from Figure 2. From the deviation, the inductive apicophilicity and the π-conjugation energy
of BH_{2} are deduced to be -11.2 and $4.1 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. However, based on the relative energy of $5 \mathrm{e}_{\perp}$, the inductive apicophilicity is indicated to be only $-5.8 \mathrm{kcal} \mathrm{mol}^{-1}$. This discrepancy is probably due to the only partial optimization of structure $5 \mathbf{e}_{\perp}$ (the $\mathrm{H}_{\mathrm{e}} \mathrm{PB}$ angle was fixed at 90°) which raises its energy.

Conclusions

The relative energies, calculated at MP4SDTQ/6-31G*+ZPE, for both TP and SP conformations reveal inherent substitution effects. Some of the energy differences are quite close to empirical apicophilicity values or experimental energy differences of more highly substituted compounds. The SP structures for $\mathrm{PH}_{4} \mathrm{X}$ (X $=\mathrm{Li}, \mathrm{Na}, \mathrm{BeH}$, and MgH) are the most stable conformations. The apicophilicities of $\mathrm{CH}_{3}, \mathrm{OH}$, and SH are small. The preferential Y-H orientation in equatorial $\mathrm{PH}_{4} \mathrm{OH}$ and $\mathrm{PH}_{4} \mathrm{SH}$ is orthogonal to the equatorial plane. This preference is an important factor in determining the conformations of cyclic phosphorane systems. Our apicophilicity scale (in $\mathrm{kcal} \mathrm{mol}^{-1}$) is $\mathrm{OH}(0.4)>$
$\mathrm{SH}(-0.1)>\mathrm{CH}_{3}(-0.9)>\mathrm{PH}_{2}(-3.3)>\mathrm{NH}_{2}(-7.2)>\mathrm{SiH}_{3}$ $(-8.6) . \quad \mathrm{PH}_{4} \mathrm{~F}$ and $\mathrm{PH}_{4} \mathrm{Cl}$ are not suitable for apicophilicity evaluation because of their ionic character.

Substituent effects on pentacoordinated phosphoranes can be divided into inductive (or σ) and π-bonding effects. Inductive effects dominate in the SP and apically substituted TP conformations, and the relative energies correlate with the electronegativities. π-Interactions play an important role in the equatorially substituted TP conformations of NH_{2} and OH . After dissection and delection of these π-bonding effects, the inductive contribution remaining also correlates with electronegativity.

Acknowledgment. This work was supported by NATO and by USPH NIH Grant GM30369, the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie, and the Convex Computer Corporation. Y. Zhang was supported by an Alexander von Humboldt Foundation fellowship. We thank H. Xie for technical assistance.

Assessing Molecular Similarity from Results of ab Initio Electronic Structure Calculations

Jerzy Cioslowski* and Eugene D. Fleischmann
Contribution from the Department of Chemistry and Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-3006. Received March 2, 1990

Abstract

A new molecular similarity index, called the number of overiapping electrons (NOEL), is proposed. This similarity index can be computed very rapidly from the natural orbitals and their occupation numbers of the molecules under comparison. The low computational cost makes it possible to optimize the mutual orientation of molecules by maximizing NOEL. The magnitude of NOEL is related to the number of electrons in the molecular fragment common to both molecules. The new approach is illustrated on the examples of benzene, aniline, nitrobenzene, and 4-nitroaniline molecules and the acetate, isoxazole 3 -oxide and isoxazole 5 -oxide anions.

Introduction

In its early stages, chemistry has been mainly the science of comparing and classifying molecules and chemical reactions. Only in the last 50 years has it become possible to rationalize the observed properties of molecules by using the first principles of quantum mechanics. The properties that have rigorous theoretical definitions, such as energies and multipole moments, are easily amenable to theoretical approaches. On the other hand, properties of more intuitive nature, such as reactivity, aromaticity, or similarity, are more difficult to quantify,

Pharmacologists, toxicologists, and medicinal chemists find it particularly convenient to discuss and classify the physiological action of molecules by using instinctive measures of molecular similarity. For example, the taste of various substances is usually believed to be related to their molecular shape. ${ }^{1}$ Organic chemists constantly use the concept of molecular similarity by invoking the notions of functional groups and synthons. Yet, the attempts to rigorously define the molecular similarity are quite scarce in the chemical literature. One of the obvious reasons is that certain arbitrary assumptions have to be necessarily made in order to judge the similarity of molecules from the results of quantum-mechanical calculations. The first assumption is that of molecular rigidity because calculations involve the Born-Oppenheimer approximation, which freezes the positions of the nuclei. The second assumption is of a more philosophical nature. One has to postulate

[^11]that similar molecules have similar electron distributions. Third, one has to adopt a particular form of the functional which yields the numerical magnitude of the molecular similarity. As in the case of the definition of atomic charges, a plethora of choices are obviously possible; we insist, however, that any acceptable measure of the molecular similarity should conform to the following rules: (1) It should be derivable from the wave functions of the molecules in question alone. It should not depend upon either explicit or implicit assumptions about the basis sets used in calculations or the level of theory employed. (2) It should have some clearly recognizable physical or mathematical interpretation. (3) It should be computationally feasible. In particular, it should allow for optimization of the mutual orientation of the molecules in question by means of maximization of the similarity measure.

Although substantial progress have been recently achieved in quantification of the three-dimensional shape and similarity of molecules, ${ }^{2}$ the only reported practical calculations involve a similarity index based on the electron density that has been put forward by Carbo, Leyda, and Arnau. ${ }^{3}$ If the molecules under comparison, A and B , have the electron densities $\rho_{\mathrm{A}}(\overrightarrow{\mathrm{r}})$ and $\rho_{\mathrm{B}}(\overrightarrow{\mathrm{r}})$, respectively, then the similarity index reads

$$
\begin{equation*}
R_{\mathrm{AB}}=\int \rho_{\mathrm{A}}(\overrightarrow{\mathrm{r}}) \rho_{\mathrm{B}}(\overrightarrow{\mathrm{r}}) \mathrm{d} \overrightarrow{\mathrm{r}} /\left[\int \rho_{\mathrm{B}}^{2}(\overrightarrow{\mathrm{r}}) \mathrm{d} \overrightarrow{\mathrm{r}} \int \rho_{\mathrm{B}}^{2}(\overrightarrow{\mathrm{r}}) \mathrm{d} \overrightarrow{\mathrm{r}}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

(2) Mezey, P. G. J. Comp. Chem. 1987, 8, 462. Mezey, P. G. J. Math. Chem. 1988, 2, 299, 325.
(3) Carbo, R.; Leyda, L.; Arnau, M. Int. J. Quantum Chem. 1980, 17, 1185.

[^0]: ${ }^{\dagger}$ University of California.
 ${ }^{1}$ University of Erlangen-Nürnberg.

[^1]: (25) Magnusson, E. J. Comput. Chem. 1984, 5, 612.
 (26) Schleyer, P. v. R. Pure Appl. Chem. 1987, 59, 1647
 (27) Binkely, J. S.; Whiteside, R.; Krishnan, R.; Seeger, R.; Schlegel, W. B.; DeFrees, D. J.; Topiol, S.; Kahn, L. R.; Pople, J. A. QCPE 1981, 13, 406.
 (28) Binkely, J. S.; Frisch, M.; Raghavachari, K.; DeFrees, D. J.; Schlegel, B.; Whiteside, R.; Fluder, E.; Seeger, R.; Pople, J. A. Gaussian 82, Release A Version, Carnegie-Mellon University, 1983.

[^2]: (29) Schlegel, H. P. J. Comput. Chem. 1982, 3, 214.
 (30) (a) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939. (b) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2197. (c) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, l04, 5039.
 (31) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (b) Hariharan, P. C.: Pople, J. A. Theor. Chim. Acta 1973, $28,213$. (c) Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654 . (d) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Section 4.3.
 (32) Pople, J. A.; Schlegel, B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, M.; Whiteside, R.; Hout, R. F., Jr.; Hehre, W. J. Int. J. Quantum Chem. Symp. 1981, 15, 269. DeFrees, D. J.; McLean, A. D. J. Chem. Phys. 1985, 82, 333. Also, see: Komornicki, A.; Pauzat, F.; Ellinger, Y. J. Chem. Phys. 1983, 87, 3847.

[^3]: (36) (a) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83,735. (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736. (c) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. (d) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362. (e) Reed, A. E.; Schleyer, P. v. R. Inorg. Chem. 1988, 27, 3969.
 (37) Schleyer, P. v. R. Pure Appl. Chem. 1984, 56, 151; 1983, 55, 355.
 (38) Zemann, J. Z. Anorg. Allg. Chem. 1963, 324, 241.
 (39) Hellwinkel, D. Chem. Ber. 1969, 102, 528.

[^4]: (40) Brauer, G. E.; Zintl, Z. Physik. Chem. 1937, 37B, 327.
 (41) Ross, M. R.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 1234.
 (42) (a) Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 4623. (b) Trippett, S.; Whittle, P. J. J. Chem. Soc., Perkin Trans. I 1975, 1220. (c) Lattman, M.; Olmstead, M. M.; Power, P. P.; Rankin, W. H.; Robertson, H. E. Inorg. Chem. 1988, 27, 3012.

[^5]: (43) (a) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen' Springer: Berlin, 1983. (b) Gorenstein, D. G. Chem. Rev. 1987, 87, 1047.
 (44) Haubold, V. W.; Keller, W.; Sawitzki, G. Angew. Chem. 1988, 100, 958.

[^6]: (45) (a) Bartell, L. S.; Hansen, K. W. Inorg. Chem. 1965, 4, 1777. (b) Yow, H.; Bartell, L. S. J. Mol. Struct. 1973, 15, 209.
 (46) Weiss, J.-V.; Schmutzler, R.; Schomburg, D.; Scheldrick, W. S. Chem. Ber. 1979, /12, 1464.

[^7]: ${ }^{a}$ Bond lengths in \AA, angles in deg. See text for the corresponding structures. θ is the dihedral angle of $\mathrm{H}_{\mathrm{e}} \mathrm{PY} \mathrm{H}_{\mathrm{a}}$. Primes and double primes refer

[^8]: (47) Schiebel, H.-M.; Schmutzler, R.; Schomburg, D.; Wermuth, U. Anorg. Chem., Org. Chem. 1983, 38, 702.
 (48) Daly, J. J. J. Chem. Soc. A 1966, 1020.
 (49) Bone, S. A.; Trippett, S.; Whittle, P. J. Chem. Soc. Perkin Trans. I 1977, 437.
 (50) Pierce, S. B.; Cornwell, C. D. J. Chem. Phys. 1968, 48, 2118.

[^9]: (51) Richman, J. E.; Flay, R. B. J. Am. Chem. Soc. 1981, 103, 5265.
 (52) Brown, S. J.; Clark, J. H. J. Chem. Soc., Chem. Commun. 1983, 1256.

[^10]: ${ }^{a}$ Bond lengths in A, angles in deg. See text for the corresponding structures. Primes and double primes refer to nonequivalent hydrogens as indicated in the structural figures.

[^11]: (1) Amoore, J. E. Molecular Basis of Odor; Thomas: Springfield, IL, 1970.

