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A new formula is derived for the determination of the potential energy of the central unit cell of a finite
crystal; this formula is called the crystal potential formula. The crystal potential formula is based on a two-
center Cartesian multipole expansion. The key feature of the crystal potential formula is that it achieves a
separation of the lattice geometry and multipole moments. This feature allows one to compute in a highly
effective way the crystal energies as a function of the molecules contained in the unit cell. Numerical
implementation is discussed, and a numerical example is given. The example mimics an organic crystal
composed of dipolar molecules. It is found that the crystal environment may create local minima and that
the effects of the environment might be well-approximated by consideration of the proximate unit cells only.
Both of these effects have important implications for the crystal engineering of molecular organic materials.

Madelung constants provide a measure for the lattice energy
of inorganic crystalline solids, and they play a central role in
their description.2 The electrostatic interactions of extended
lattice structures also are becoming more fully understood, and
this knowledge is now being exploited in the design of inorganic
films.3 The computation of lattice energies becomes more
difficult for molecular crystals that are bound by weaker
interactions, and such methods are only just emerging.4-6 One
of the more successful approaches toward the engineering of
organic molecular crystals consists of the synthon approach.7,8

Synthons are molecular fragments designed to recognize certain
other atoms or functional groups with high selectivity and high
affinity. The application of knowledge about the preferential
formation of interactions between certain pairs of synthons
provides a first step toward the design of crystals. Most current
applications of the synthon approach focus on these primary
interactions, and secondary interactions between synthons are
either neglected or considered only in a much less comprehen-
sive fashion. Since synthons basically are characterized by their
electrostatic field, increasingly sophisticated approaches require
the consideration of more and more secondary and higher
electrostatic interactions and also require are more and more
accurate description of the multipole moments of each synthon.
With a view to interesting novel materials, polar molecules are
particularly important, and they often produce the most useful
molecular organic materials9 if these molecules crystallize in a
fashion that results in a large macroscopic polarization. For
example, most nonlinear optical materials10,11 contain dipolar
chromophores, and noncentrosymmetry is a minimal require-
ment for the crystal to show nonlinear optical effects. In fact,
rather large macroscopic polarizations are desirable and the
manufacture of such materials has presented a grand challenge
since dipolar molecules in general prefer to pack in a way that
minimizes or even cancels molecular dipoles.

In order to facilitate the manufacturing of organic molecular
crystalline materials, we would like to obtain an a priori method
for determining if a given molecule has a stable crystal state.
We start with the potential energy function given by eq 1. The
meaning of the terms in this equation are illustrated in Figure

1. The regionsA0 and Aω represent the boundaries of the
molecule contained in the central unit cell and in the unit cell
indexed byω; Rω is the vector that starts in the center of the
central unit cell and ends in the center of the unit cell indexed
by ω; r and s are vectors that start at the centers of their
respective unit cells and end at some other point within their
respective unit cells; andσ1,σ2 are charge distributions that will
be defined more precisely later in the paper. We can expand
eq 1 in an infinite series whose coefficients are multipole
moments. Using this expansion, we would like to compute the
potential energy of the central unit cell of a hypothetical crystal
that is defined in terms of multipole moments (that correspond
to a real molecule) and by the shape of our unit cells. To
accomplish this task we need to evaluate a sum of the form
given in eq 2. In eq 2,Ω is a finite collection of unit cell
indices,mi are multipole moments in the unit cell, andf(ω,m1,

...mk) is the approximate (since we are only dealing with finitely
many multipole moments) potential energy of the central

* To whom correspondance should be addressed. Facsimile (573) 882-
0331; Email, chemrg@showme.missouri.edu.

Figure 1. Definition of the local coordinate system.

∫A0∫Aω

σ2(r) σ1(s)

|Rω + (r - s)| dr ds (1)

Epot ) ∑
ω∈Ω

f(ω,m1, ...,mk) (2)
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unit cell of the crystal with the unit cell indexed byω. Since
the above sum is over all the unit cells in the crystal, and since
the number of unit cells grows cubically with the volume of
the crystal, performing the above sum is practical only for very
small crystals. Several methods exists that can be used to reduce
the computational complexity of calculating eq 2. The most
widely known methods are the Ewald methods and these
methods have been reviewed.12 Other methods are multipole
methods,13-15 extrapolation and convergence acceleration meth-
ods,16,17 and Euler Maclaurin summation.18,19 Since we are
looking for stable states we need to find the relative minima of
eq 2 with respect to geometry and orientation of the multipole
moments. One approach for finding the relative minima is to
simply vary our parameters (manually or via some search
algorithm) and see where minima occur. The drawback to this
approach is that eq 2 has to be recalculated every time the
parameters change. In order to overcome this computational
bottleneck, we have developed a method that separates the lattice
geometry and the multipole moments. As a result we can rotate
our multipole moments and, as long as our geometry remains
constant, recalculate eq 2 without performing any major
calculations.
We first derive the multipole-multipole potential energy

formula. We start our derivation by expanding|Rω + z|-1, the
reciprocal of the distance between a point inA0 and a point in
Aω, in an infinite series expansion as follows:

Setting x ) (2z‚Rω)/|Rω|2 + |z|2/|Rω|2 and applying the ap-
propriate expansion formula, we find that|R+ z|-1 has a power
series expansion of the form

whenever|x| < 1, and where

With a little calculation it can be shown that

where I is the 3 by 3 identity matrix,Xk is the k-fold tensor
product, and〈.,.〉 is the inner product operator. If we replacez
by (r - s) and rearrange the terms, we get

where

If we denote the electron density distribution of a molecule on
A0 asF(r) and the charge of nucleusi, located atPi, asqi, then

we can define the “charge distribution”σ(r) by

where the Dirac delta functionδ has the property

If σ1,σ2 are molecular “charge distributions” within the unit cells,
then the potential felt by the central unit cell due toσ1 in the
central cell andσ2 in the cell indexed byω becomes

The right-hand side of equation 7 can be turned into an
expression of monopoles, dipoles, quadrupoles, ... etc., by simply
expanding the tensor product and appropriately interchanging
the integration. For example, ifm) 2, the (i, j) component of

is given by eq 8.

Equation 8 is an expression of monopole, dipole, and quadrupole
components. Thus we have derived an expression for the
multipole-multipole potential. See Table 1.

Since we want to determine the value of the potential energy
Epot, we need to sum the right-hand side of eq 7 over allω ∈
Ω. We introduce the following notation. LetΩk be a crystal
with k unit cells, defineC0(Ωk) ) ∑ω∈Ω|Rω|-1 andCm(Ωk) )
∑ω∈Ω∑k)0

m/2b(ω)m-k,k A(ω)m-k,k, whereRω is the distance from
the central unit cell to the unit cell indexed byω, b(ω)j,k )

|Rω|-2j-1aj2j-k(jk ), andA(ω)j,k ) (XkI) X (Xj-2kRω). It is easy

to see that all geometric information is contained within the
constantsCm(Ωk). We now sum the right-hand side of eq 7

|Rω + z|-1 ) |Rω|-1(1+
2z‚Rω

|Rω|2
+ |z|

2

|Rω|2)
-0.5

(3)

|Rω + z|-1 ) |Rω|-1(1+ ∑
n)1

∞

anx
n) (4)

an )
-(1)n(2n- 1)!

n! (n-1)! 22n-1

xn ) |Rω|-2n∑
k)0

n (nk )2n-k〈(XkI) X (Xn-2kRω), Xn+kz〉 (5)

1

|Rω + (r - s)|
)

1

|Rω|
+

∑
m)1

∞

〈 ∑
k)0

m/2

b(ω)m-k,k A(ω)m-k,k, Xm(r - s)〉 (6)

b(ω)j,k ) |Rω|-2j-1aj2j-k(jk ); A(ω)j,k ) (XkI) X (Xj-2kRω)

TABLE 1. Values of m versus Multipole-Multipole
Interactions

m

monopole dipole quadrupole octupole hexadecapole

monopole 0 1 2 3 4
dipole 1 2 3 4 5
quadrupole 2 3 4 5 6
octupole 3 4 5 6 7
hexadecapole 4 5 6 7 8

σ(r) ) F(r) + ∑
i

qiδPi
(r)

∫AδPi
(r) ) 1 if Pi ∈A, and ∫AδPi

(r) ) 0 if Pi∉A

∫A0∫Aω

σ2(r) σ1(s)

|Rω + (r - s)|
drds)

1

|Rω|
∫A0σ1(s) ds∫Aω

σ2(r) dr +

∑
m)1

∞

〈 ∑
k)0

m/2

b(ω)m-k,k A(ω)m-k,k,∫A0∫Aω
σ2(r) σ1(s)

(Xm(r - s)) drds〉 (7)

∫A0∫Aω
σ2(r) σ1(s)(X

m(r - s)) drds

(∫A0σ1(s) ds)(∫Aω
σ2(r)rirj dr)

- (∫A0σ1(s)sj ds)(∫Aω
σ2(r)ri dr)

- (∫A0σ1(s)si ds)(∫Aω
σ2(r)rj dr)

+ (∫A0σ1(s)sisj ds)(∫Aω
σ2(r) dr) (8)
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over all ω ∈ Ω and then interchange the sums to get the
following

We call eq 9a thecrystal potential formula(CPF). In this
equation the geometry (i.e., theCm) and the charge distributions
are completely independent of each other. The equation for
Epot can know be written as

where the sum is taken over all theσi, σj pairs in the unit cell.
Equation 9 represents an efficient method of evaluating a large
number of finite crystals with fixed geometry.
To demonstrate the importance of this concept, we examine

a special case where the unit cell contains only one dipole
momentµ while all the multipole moments are zero. In this
case eq 9 simplifies to eq 10.

Changing the value of the dipole vectorµ will not effect the
value ofC2(Ωk). Thus onceC2(Ωk) has been calculated, the
size of the lattice is no longer a computational factor. One need
only to defineµ and evaluate eq 10.
For large crystals the computation ofCm can be a very

nontrivial problem. As the volume of the crystal grows, the
error due to numerical roundoff and the number of calculations
required grow very rapidly. In order to ameliorate these
problems, we propose using an Euler Maclaurin summation
approach. Euler Maclaurin methods in three dimensions have
until recently been impractical to implement; however, recent
advances in symbolic integration software have made this
approach very appealing. We will present this technique in an
upcoming paper.

To demonstrate the efficiency of the computation of the
potential energy via the crystal potential formula, we have
numerically evaluated the energy of a model crystal with the
unit cell shown in Figure 2. The tetragonal unit cell isa ) 6
Å long, b ) 3 Å wide, andc ) 3 Å deep and contains two
dipoles of equal magnitude,µ1 ) µ2 ) 1 D, which are located
at positions (0.25a, 0.5b, 0.5c) and (0.75a, 0.5b, 0.5c) and these
dipoles are coplanar and lie in the plane wherez) 0.5c. One
of the dipoles,µ1, is aligned with theb-axis (angle witha-axis
is 90°) while the other dipole,µ2, is rotated around thez-axis
by an angle ofΘ°. ForΘ ) +90°, this model crystal represents
a completely dipole parallel-aligned ensemble. We recently
succeeded in the fabrication of two prototypes of near-perfectly
dipole parallel aligned organic molecular ferroelectric materials,

and we are therefore particularly interested in such lattices.20

On the other extreme, forΘ ) -90°, the unit cell generates a
crystal that contains layers of completely parallel-aligned dipoles
in such a way that the polarizations of neighboring layers cancel.
We computedC2(Ωk) (i.e., the dipole term) for such hypothetical
rectangular crystals withk ) 0, 1, 15, and 100 shells. These
computations require only the unit cell dimensions and the
locations at which the dipoles are centered (while neither the
direction nor the magnitude of the dipoles enters this calcula-
tion). TheseC2(Ωk) constants are then employed to compute
Epot for various relative orientations ofµ1 andµ2. The results
of our computations are graphically displayed in Figure 3.
Several important conclusions have resulted. For the unit cell
alone, it is clear that the dipole antiparallel alignment withΘ
) -90° is the only minimum of the electrostatic energy as a
function of theΘ angle while the parallel alignment corresponds
to an energy maximum. The situation drastically changes when
the effects of the crystal environment are considered: A
maximum occurs for intermediateΘ values (around 20°), and
a two-minimum scenario is created. While dipole antiparallel
alignment withΘ ) -90° becomes more and more favored as
the size of the crystal increases, the dipole parallel alignment
with Θ ) 90° becomes somewhat destabilized, but, most
importantly, this lattice architecture becomes a local minimum.
This simple example demonstrates the very possibility of
realizing in a crystal environment a highly anisotropic dipole
distribution even for cases where the dipole assembly contained
in the unit cell is repulsive! Once a molecule is identified for
which lattices with dipole antiparallel- or parallel-alignment exist
as (local) minima, one can then think of ways to make the dipole
parallel-aligned lattice the thermodynamically preferred phase
if the molecules are designed such that they allow for additional
nondipole interactions. We have described such design criteria
elsewhere20 in conjunction with our reports of the realization
of two prototypes of ferroelectric organic materials that were
designed with a view of making novel NLO materials with
higher chromophore densities. The de novo design of crystals

E(σ1, σ2) ) C0(Ωk)∫A0σ1(s) ds∫Aω
σ2(r) dr +

∑
m)1

∞

〈Cm(Ωk),∫A0∫Aω
σ2(r) σ1(s)(X

m(r - s)) drds〉 (9a)

Epot ) ∑
i,j

E(σi, σj) (9b)

Epot ) 〈C2(Ωk), -2(µiµj)i,j)1,2,3〉 (10)

Figure 2. Depiction of the model crystal that was numerically
evaluated.

Figure 3. Energy of the central unit cell,Epot, as a function of theΘ
angle for crystals of various sizes (k ) 0, 1, 15, 500).
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is an undertaking of extraordinary complexity, and it is difficult
to apply the scientific methods of analysis and synthesis to such
complex systems.21 The results of our analysis suggest,
however, that it might be possible to obtain valuable qualitative
information about the effects of the crystal environment by way
of considering relatively small assemblies. Figure 3 illustrates
that the curve computed fork ) 1 provides a surprisingly
accurate qualitative description of the crystal effects in larger
crystals. We have seen similar behavior in other simulations.
If this hypothesis proves valid, then this analytical insight can
be a tremendously useful device for the analysis and the design
of crystals. With the crystal potential formula we are now in a
position to test this hypothesis numerically, and extensive studies
along those lines are in progress.
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