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LATTICE SUM CALCULATIONS FOR 1/RP INTERACTIONS

Introduction

C onsider a hypothetical crystal with square unit
cells and one atom at the center of each unit

cell. We would like to compute the sum, of some
1/rp interaction, between the central unit cell and all
other unit cells. If the crystal has one shell, then 26
interactions need to be computed. With two shells,
124 interactions need to be computed. As can be
seen from Table I, the number of interaction grows
very rapidly.

Clearly, calculating a finite lattice sum can be
computationally very expensive. If one is to perform
such a calculation for a crystal of any tangible size,
some method other than direct calculation needs to
be employed.

In recent years, multipole expansion methods
that take advantage of periodicity (e.g., refs. 1, 2,
and 3) have been developed for crystal modeling.
The basic multipole expansion that is used in refs. 1,
2, and 3, is a one center expansion. By this, we mean
that when computing the interaction of two charge
distributions, the multipole moments of the two dis-
tributions are all relative to the same coordinate
system. If instead of having the two distributions
share a common coordinate system each distribu-
tion is assigned its own coordinate system, then a
greater degree of computational separation can be
achieved. In this article we will examine the use of
a Cartesian dual coordinate system (or two-center)
expansion, in lattice sums. A spherical harmonic
analog of the expansion in this paper can be found
in ref. 4.

TABLE I.
Increase of the Number of Interactions with the
Number of Shells.

Number of Shells Number of Interactions

1 26
2 124
5 1330

10 9260
20 68,920
50 1,030,300

100 8,120,601
500 1,003,003,000

1000 8,012,006,000
5000 1012 (approx.)

Using a two-center expansion, we first derive the
following approximation:

∑
ω∈�

fω0 (ω) ≈
M∑

m= 0

〈
Cp,m(�), fm,ω0

〉
. (1)

In the above formula, � represents the periodic
placement of a multipole moment in a crystal, while,
ω represents a specific location, of the multipole mo-
ment, within the crystal. The term fω0 (ω) represents
1/rp interaction between a multipole moment in the
central unit cell represented by ω0, and the multi-
pole moment of� at location ω. The 〈·, ·〉, is the inner
product operator. The fm,ω0 are mth order multipole
moments of the expansion. And finally, the Cp,m(�)
are geometry constants that are uniquely defined by
the shape of the unit cell and the size of the crys-
tal.

The interesting and useful feature of formula (1)
is that, unlike lattice summation approaches based
on more standard methods, the geometry and the
multipole moments are essentially independent of
each other. It is therefore possible to modify ei-
ther the geometry or the charge distribution with-
out having to recalculate the other quantity. This
method does not require that � has a lattice struc-
ture. However, its greatest usefulness is probably
in the systematic studies of the energies of multi-
pole lattices as a function of the number, the type,
the orientation, and the magnitudes of the mul-
tipoles contained in a certain unit cell. In a first
step in this direction, we have implemented for-
mula (1), with M = 2. In this study we explored
the rotational variance of the potential interaction
between the central unit cell and all other unit cells
in a crystal composed of cubic unit cells containing
a single dipole. The results showed, unexpectedly
and somewhat counterintuitively, that the lattice en-
ergy is invariant under such rotation.5 In another
example,6 we used the geometry constant method
to search for the potential energy minima of a crys-
tal composed of unit cells containing two dipolar
molecules. The study revealed that an energy well
exists when the dipoles are parallel aligned. This is
a very counter intuitive result because two dipoles,
by themselves, will not form a stable structure.
This study points out the importance of the sur-
rounding environment, and the need for performing
minimizations on structures that are of substantial
size.

In separating the geometry from the multipole
moments, we have effectively taken the computa-
tional complexity that is depicted in Table I and
moved it into the Cp,m. Our problem is now how
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to perform the lattice sum calculations that pro-
duce the Cp,m. In ref. 7, Kukhtin and Shramko have
come up with a rather elegant idea for performing
lattice sum calculations. They approach this prob-
lem using a method known as Euler summation.
This method is essentially a method for convert-
ing discrete sums into continuous sums (i.e., inte-
grals). From a mathematical point of view, but not
necessarily from an intuitive point of view, Euler
sums are closely related to the widely used Ewald
sums.8 Euler sums have been around for a long
time. They even predate Ewald summation. The rea-
son that they have not caught on in the past is that
the integrals they produced could not be evaluated
with existing methods. Recent advances in sym-
bolic, and numerical integration have changed this
situation. Symbolic integration packages such as Re-
duce, Maple, or Mathematica when combined with
recently developed numerical integration methods,
can now be applied to obtain highly accurate esti-
mates of integrals that are produced from the Euler
summation process.

This article is organized as follows. In the fol-
lowing section a two-center multipole expansion is
derived for 1/rp; then, formula (1) is derived. Then,
we show how to use formula (1) to calculate po-
tential energy. And finally, then we derive the Euler
summation integrals for calculating the Cp,m.

Multipole–Multipole Interaction
Formula Derived for Lattice Sums

Because a complete derivation of the 1/rp

multipole–multipole interactions formulas, of arbi-
trary order, are difficult to find, these formulas are
derived below. The general formula is then fac-
tored in such a way as to separate the geometry
from the actual multipole moments. This allows for
certain efficiencies when dealing with the sums of
multipole–multipole interactions when the geome-
try is kept fixed. At the end of this section, p is set
to 1, and two formulas for the multipole–multipole
components of potential energy is presented.

THE MULTIPOLE EXPANSION

Using the coordinate system depicted in Fig-
ure 1, we have R = (R1, R2, R3), r = (r1, r2, r3),
s = (s1, s2, s3), and z = (z1, z2, z3) = r− s.

Let⊗n denote the n-fold tensor (Kronecker) prod-
uct. If A, B are nth order tensors, then denote the
inner product of A and B by 〈A, B〉n or just 〈A, B〉. Let
{ej}3j= 1 be the standard basis for R3 and let I be the 3

FIGURE 1. Coordinate system.

by 3 identity matrix. We will use “·” to represent the
standard inner product on Rn. Define

an,p =
−p
2

(−p
2 − 1

)(−p
2 − 2

) · · · (−p
2 − n+ 1

)
n!

.

With a slight abuse of notation, the p subscript will
be dropped and an will be written instead of an,p.

Theorem 1. Define

bn,k = |R|−2n−pan2n−k
(

n
k

)
,

An,k =
(n−k⊗ R

)
⊗
( k⊗ I

)
.

Then the expression

1
|R|p +

∞∑
m= 1

〈bm/2c∑
k= 0

bm−k,kAm−k,k,
m⊗ z

〉
converges absolutely whenever the condition∣∣∣∣2z · R

|R|2 +
|z|2
|R|2

∣∣∣∣ < 1 (2)

is satisfied. Whenever (2) is satisfied, we have the follow-
ing expansion.

1
|R+ z|p =

1
|R|p +

∞∑
m= 1

〈bm/2c∑
k= 0

bm−k,kAm−k,k,
m⊗ z

〉
. (3)

Proof. If we set

x = 2z · R
|R|2 +

|z|2
|R|2 ,

then 1/|R+ z|p can be expressed as

1
|R+ z|p =

1
((R+ z) · (R+ z))p/2

= 1
(R · R+ 2z · R+ z · z)p/2

= 1
|R|p

(
1+ 2z · R
|R|2 +

|z|2
|R|2

)−p/2

= 1
|R|p (1+ x)−p/2
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and, whenever |x| < 1, 1/|R+ z|p has the absolutely
convergent expansion

1
|R+ z|p =

1
|R|p

(
1+

∞∑
n= 1

anxn

)
. (4)

By the binomial theorem, we have the following

|R|2nxn =
n∑

k= 0

(
n
k

)
2n−k〈R, z〉n−k(|z|2)k

=
n∑

k= 0

(
n
k

)
2n−k〈R, z〉n−k(z2

1 + z2
2 + z2

3

)k

=
n∑

k= 0

(
n
k

)
2n−k〈R, z〉n−k

(
3∑

j = 1

〈ej, z〉2
)k

=
n∑

k= 0

(
n
k

)
2n−k

〈n−k⊗ R,
n−k⊗ z

〉( 3∑
j= 1

〈 2⊗ ej,
2⊗ z
〉)k

=
n∑

k= 0

(
n
k

)
2n−k

〈n−k⊗ R,
n−k⊗ z

〉(〈 3∑
j= 1

2⊗ ej,
2⊗ z

〉)k

=
n∑

k= 0

(
n
k

)
2n−k

〈n−k⊗ R,
n−k⊗ z

〉〈
I,

2⊗ z
〉k

=
n∑

k= 0

(
n
k

)
2n−k

〈n−k⊗ R,
n−k⊗ z

〉 〈 k⊗ I,
2k⊗ z
〉

=
n∑

k= 0

(
n
k

)
2n−k

〈(n−k⊗ R
)
⊗
( k⊗ I

) n+k⊗ z
〉
.

Thus, we obtain

1
|R+ z|p =

1
|R|p

(
1+

∞∑
n = 1

an

[
|R|−2n

n∑
k= 0

(
n
k

)
2n−k

×
〈(n−k⊗ R

)
⊗
( k⊗ I

)
,

n+k⊗ z
〉])

. (5)

Set m = n+ k. Because k = 0, . . . , n, we must have
that k = 0, . . . , bm/2c. Reindexing the left hand side
of eq. (5) we arrive at eq. (3):

1
|R+ z|p =

1
|R|p +

∞∑
m= 1

〈bm/2c∑
k= 0

bm−k,kAm−k,k,
m⊗ z

〉
. �

Numerical studies have shown that eq. (3) con-
verges very slowly whenever∣∣∣∣2z · R

|R|2 +
|z|2
|R|2

∣∣∣∣
is near 1. A possible method to improve the conver-
gence rate would be to use nonlinear convergence
acceleration methods of the type used in ref. 9.

Recalling that z = r − s, where z, r, s are vec-
tors, the (i1, i2, . . . , im) tensorial component of ⊗mz =
⊗m(r− s) is the term (ri1 − si1 )(ri2 − si2 ) · · · (rim − sim ),
ik = 1, 2, 3. For reason that will become clear later
in the paper, we would like to be able to write ⊗mz,
in eq. (3), in terms of the multipole moments whose
(i1, i2, . . . , im) tensorial components are (ri1ri2 · · · rim ),
and (si1si2 · · · sim ), ik = 1, 2, 3. This can be accom-
plished with the following.

For nonnegative integers t and m with t ≤ m,
define

St,m =
{
(k1, k2, . . . , kt) | ki ∈ {positve integers},
1 ≤ ki ≤ m, and ki < kj whenever i < j

}
.

If η ∈ St,m, define η̃ = (k1, k2, . . . , km−t) where the
ki < kj whenever i < j, ki ∈ {1, 2, . . . , m}, and any ki

that appears in η does not appear in η̃. For η ∈ St,m

define ι( j), η( j), and η̃( j) as jth components of ι, η,
and η̃. If η ∈ S0,m then η is the null sequence; and
if η ∈ Sm,m then η̃ is the null sequence. Using the
preceding notation we have the following lemma.

Lemma 2. For a fixed ι = (i1, i2, . . . , im),

m∏
j= 1

(rιj − sιj ) =
m∑

t= 0

(−1)m−t
∑
η∈St,m

t∏
q= 1

rι(η(q))

m−t∏
q= 1

sι(η̃(q)).

(6)

Proof. The proof is by induction on m. �

Equation (6) can now be used to turn expres-
sion (3) into an expression of multipole moments.

SEPARATION OF GEOMETRY FROM THE
CHARGE DISTRIBUTIONS

Let � be a finite collection of nodes (points)
inR3, whose elements are denoted byω0,ω1, . . . ,ωM.
Define Rωi as the vector from ω0 to ωi, and define

b(ωi)n,k = |Rωi |−2n−pan2n−k
(

n
k

)
,

A(ωi)n,k =
( k⊗ I

)
⊗
(n−k⊗ Rωi

)
.

Let fω0 (ωi) be some 1/rn interaction (e.g., po-
tential energy or Lennard–Jones) between the
atoms/molecules located at ω0 and ωi, such that

fω0 (ωi) = 1
|Rωi |p

f0,ω0 (ωi)+
∞∑

m = 1

〈bm/2c∑
k= 0

b(ωi)m−k,k

×A(ωi)m−k,k, fm,ω0 (ωi)

〉
, (7)
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where fm,ω0 (ωi) is some presently unspecified tensor
of rank m, that is a function of the atoms/molecules
located at ω0, and ωi.

We would like to be able to calculate
∑

ω∈� fω0 (ω)
in a manner that separates geometric aspects from
the fm,ω0 (ω), as much as possible. The approach that
we use is described below.

From eq. (7), we have∑
ω∈�

fω0 (ω) =
∑
ω∈�

1
|Rω|p f0,ω0 (ω)

+
∑
ω∈�

∞∑
m= 1

〈bm/2c∑
k= 0

b(ω)m−k,kA(ω)m−k,k, fm,ω0 (ω)

〉
. (8)

Interchanging the order of summation, and set-
ting Cp,0(�) = ∑

ω∈� 1/|Rω|p and Cp,m(�) =∑
ω∈�

∑bm/2c
k= 0 b(ω)m−k,kA(ω)m−k,k we can write∑

ω∈�
fω0 (ω) = Cp,0(�)f0,ω0 +

∞∑
m= 1

〈
Cp,m(�), fm,ω0

〉
. (9)

POTENTIAL ENERGY

When p is set to 1, eq. (9) can be used for po-
tential energy calculations. The specifics follow. Let
r = (r1, r2, r3)α be a local coordinate system. If ρe(r) is
an electron density distribution that occupies some
finite region of space A0, then the “charge distribu-
tion,” ρ(r), is defined as follows. Let qi be the charge
of the ith nucleus located at position Pi. Then

ρ(r) = ρe(r)+
∑

i

qiδPi(r),

where the Dirac delta function, δ, has the following
property: ∫

A
δPi(r) =

{
1 if Pi ∈ A,
0 if Pi /∈ A.

Letting ρ(r) be a continuous charge distribution,
we define the nth multipole moment as the tensor
whose ι = (i1, i2, . . . , in), ik = 1, 2, 3, component is∫∫∫

ρ(r1, r2, r3)ri1ri2 · · · rin dr1 dr2 dr3.

Using Theorem 1, and the above notation, the po-
tential, ∫

A

∫
B

ρ(r)σ (s)
|R+ (r− s)| dr ds,

can be expanded as follows:∫
A

∫
B

ρ(r)σ (s)
|R+ (r− s)| dr ds = 1

|R|
∫

A

∫
B
ρ(r)σ (s) dr ds

+
∞∑

m= 1

〈bm/2c∑
k= 0

bm−k,kAm−k,k,

∫
A

∫
B
ρ(r)σ (s)

(m⊗(r− s)
)

dr ds

〉
, (10)

where the ι = (ι1, ι2, . . . , ιm), ιk = 1, 2, 3, tensorial
component∫

A

∫
B
ρ(r)σ (s)(rι1 − sι1 )(rι2 − sι2 ) · · · (rιm − sιm ) dr ds

of ∫
A

∫
B
ρ(r)σ (s)

(⊗m(r− s)
)

dr ds

is
m∑

t = 0

(−1)m−t
∑
η∈St,m

(∫
B
ρ(r)

t∏
q= 1

rι(η(q)) dr

)

×
(∫

A
σ (s)

m−t∏
q= 1

sι(η̃(q)) ds

)
. (11)

The following example demonstrates how to ap-
ply these formulas to the m = 2 term.

Example 3. The (a, b), a = 1, 2, 3 and b = 1, 2, 3,
tensorial component of∫

A

∫
B
ρ(r)σ (s)

(⊗2(r− s)
)

dr ds

is ∫
A

∫
B
ρ(r)σ (s)(ra − sa)(rb − sb) dr ds.

One can expand this expression as follows:∫
A

∫
B
ρ(r)σ (s)

[
(ra − sa)(rb − sb)

]
dr ds

=
∫

A

∫
B
ρ(r)σ (s)rarb dr ds

−
∫

A

∫
B
ρ(r)σ (s)rasb dr ds

−
∫

A

∫
B
ρ(r)σ (s)sarb dr ds

+
∫

A

∫
B
ρ(r)σ (s)sasb dr ds

=
(∫

B
σ (s) ds

)(∫
A
ρ(r)rarb dr

)
−
(∫

B
σ (s)sb ds

)(∫
A
ρ(r)ra dr

)
−
(∫

B
σ (s)sa ds

)(∫
A
ρ(r)rb dr

)
+
(∫

B
σ (s)sasb ds

)(∫
A
ρ(r) dr

)
. (12)
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Note that the right-hand side of eq. (12) is strictly
a function of the monopole, dipole, and quadrupole
terms of the charge distributions.

Setting

fm,ω0 (ω) =
∫

A

∫
B
ρ
(
r(ω)

)
σ
(
s(ω)

)(m⊗(r(ω)− s(ω)
))

,

we can know apply eq. (9) to find the potential en-
ergy of the central unit cell of a crystal.

To implement eqs. (10) and (11), ρe and σ e need
to be determined. For molecules with fewer than
300 atoms Hartree–Fock methods can be used to es-
timate ρe and σ e.10 The latest developments even
allow for perturbation treatments of very large sys-
tems, such as polyglycine chains and water clusters
with over 3000 basis functions.11 Still, even with
modern hardware and software, the computational
demand of ab initio computation of very large mole-
cules remains substantial and perhaps unnecessary
in studies of large series of large molecules. There
exist several alternatives to obtain useful electron
density distributions in more efficient ways and
these approaches fall into two categories. One can
either treat the entire large system and employ ap-
proximations in the theoretical level, or one can
choose to treat the large system as a composite.
Semiempirical molecular orbital theory is based on
an approximative Hartree–Fock formalism, and sev-
eral empirical parameters are introduced and fit to
experimental data. There are various implementa-
tions, and their performances have been reviewed.12

The alternative approach is based on the as-
sumption of the transferability of fragments of
molecules13 and employs this strategy to construct
approximations to the electron density of a very
large molecule using the electron densities and
properties of much smaller molecules.14 Density
composition methods differ from each other primar-
ily in the way the fragments are defined and in the
way the properties of the fragments are determined.
The various approaches to additive fuzzy electron
density fragmentation methods have recently been
reviewed.15

Euler Sums on Periodic �

To facilitate the use of eq. (9), an efficient method
for determining the Cp,m(�) needs to be developed.
Because we are primarily interested in

∑
ω∈� fω0 (ω)

when � has a lattice structure, the discussion below
will be limited to calculating the Cp,m(�) of periodic
structures.

In the following two theorems

P(t) = −
∞∑

k= 1

sin 2kπt
kπ

,

which is the Fourier series for t− btc − 1
2 .

Theorem 4 (Euler Summation). If f (x) has a continu-
ous derivative on 1

2 < x < N + 1
2 then

N∑
n= 1

f (n) =
∫ N+ 1

2

1
2

f (x) dx+
∫ N+ 1

2

1
2

fx(x)P(x) dx. (13)

Proof. If the Riemann–Stieltjes integral∫ N+1/2
1/2 f (x) dbxc (where b c is the greatest integer

function) exists, then

N∑
n= 1

f (n) =
∫ N+ 1

2

1
2

f (x) dbxc.

We, thus, have that∫ N+ 1
2

1
2

f (x) dx−
N∑

n= 1

f (n) =
∫ N+ 1

2

1
2

f (x) d
(

x−bxc− 1
2

)
.

(14)

Integrating the right-hand side by parts gives∫ N+ 1
2

1
2

f (x) d
(

x− bxc − 1
2

)
= −

∫ N+ 1
2

1
2

P(x)fx(x) dx.

(15)
Equation (13) is now immediate from eqs. (14)

and (15). �

Theorem 5. If fxyz(x, y, z) exists and is continuous on
all open sets contained in[ 1

2 , N + 1
2

]× [ 1
2 , M+ 1

2

]× [ 1
2 , L+ 1

2

]
then

(1)

M∑
m= 1

N∑
n = 1

f (n, m)

=
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dy

+
∫ M+ 1

2

1
2

P(y)
∫ N+ 1

2

1
2

fy(x, y) dx dy

+
∫ M+ 1

2

1
2

(∫ N+ 1
2

1
2

fx(x, y)P(x) dx
)

dy

+
∫ M+ 1

2

1
2

P(y)
(∫ N+ 1

2

1
2

fxy(x, y)P(x) dx
)

dy
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(2)

L∑
l= 1

M∑
m = 1

N∑
n= 1

f (n, m, l)

=
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

f (x, y, z) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fz(x, y, z)P(z) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fx(x, y, z)P(x) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fxz(x, y, z)P(x)P(z) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fy(x, y, z)P(y) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fyz(x, y, z)P(y)P(z) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fxy(x, y, z)P(x)P(y) dx dy dz

+
∫ L+ 1

2

1
2

∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

fxyz(x, y, z)

×P(x)P(y)P(z) dx dy dz.

Proof. Using eq. (13) we have that

M∑
m= 1

N∑
n= 1

f (n, m) =
∫ M+ 1

2

1
2

N∑
n= 1

f (n, m) dbyc

=
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y)

+ fx(x, y)P(x) dx dbyc.
Thus,∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dy−
M∑

m= 1

N∑
n = 1

f (n, m)

=
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dy

−
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y)+ fx(x, y)P(x) dx dbyc

=
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dy

−
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dbyc

−
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

fx(x, y)P(x) dx dbyc

=
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx d
(
y− byc)

−
∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

fx(x, y)P(x) dx dbyc. (16)

Setting u = ∫ N+1/2
1/2 f (x, y) dx and dv = d(y−byc) (with

v = y− byc − 1
2 ), the term∫ M+ 1

2

1
2

∫ N+ 1
2

1
2

f (x, y) dx d
(
y− byc)

can be integrated by parts:∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

f (x, y) dx d
(
y− byc)

= −
∫ M+ 1

2

1
2

P(y)
∫ N+ 1

2

1
2

fy(x, y) dx dy. (17)

Now using eq. (13) to sum over y∫ M+ 1
2

1
2

(∫ N+ 1
2

1
2

fx(x, y)P(x) dx
)

dbyc

=
M∑

m= 1

∫ N+ 1
2

1
2

fx(x, m)P(x) dx

=
∫ M+ 1

2

1
2

(∫ N+ 1
2

1
2

fx(x, y)P(x) dx
)

dy

+
∫ M+ 1

2

1
2

P(y)
(∫ N+ 1

2

1
2

fxy(x, y)P(x) dx
)

dy. (18)

Combining eqs. (16), (17), and (18), we have that∫ M+ 1
2

1
2

∫ N+ 1
2

1
2

f (x, y) dx dy−
M∑

m= 1

N∑
n= 1

f (n, m)

= −
∫ M+ 1

2

1
2

P(y)
∫ N+ 1

2

1
2

fy(x, y) dx dy

−
∫ M+ 1

2

1
2

(∫ N+ 1
2

1
2

fx(x, y)P(x) dx
)

dy

−
∫ M+ 1

2

1
2

P(y)
(∫ N+ 1

2

1
2

fxy(x, y)P(x) dx
)

dy

Statement (1) now follows immediately. The
proof of statement (2) is similar. �

Formula (2) of Theorem 5 is the three-dimension-
al Euler summation formula that we need to eval-
uate. The first triple integral, which is also the
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dominant term, can be completely integrated with
a symbolic integrator for quadrupole or higher
components. For monopole or dipole components,
the first triple integral can be integrated by com-
bining symbolic integration (e.g., Reduce, Maple,
Macsyma, Mathematica) with newly developed de-
terministic analogs of Monte–Carlo methods, often
referred to as quasi-Monte Carlo.16, 17 The remaining
triple integrals need to be integrated with a quasi-
Monte Carlo method.
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