ChemistrySelect

Supporting Information

Unnatural Lysines with Reduced Sidechain *N*-Basicity: Synthesis of *N*-trifluoroethyl Substituted Lysine and Homologs

Brian Jameson and Rainer Glaser*

Supporting Information

Table of Content

NMR Spectra of N^{ε} -(2,2,2-trifluoroethyl)- <i>D</i> , <i>L</i> -lysine and Intermediates (n = 2)	
Figure S1. Trifluoroacetaldehyde ethyl hemiacetal ¹ H NMR	S 4
Figure S2. Trifluoroacetaldehyde ethyl hemiacetal ¹³ C NMR	S 4
Figure S3. 4-Amino-butan-1-ol (1) ¹ H NMR	S4
Figure S4. 4-Amino-butan-1-ol (1) ¹³ C NMR	S 4
Figure S5. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (2) ¹ H NMR	S 6
Figure S6. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (2) ¹³ C NMR	S 6
Figure S7. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (2) COSY	S 7
Figure S8. 4-((2,2,2-trifluoroethyl)amino)butan-1-ol (2) HSQC	S 7
Figure S9. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (3) ¹ H NMR	S 8
Figure S10. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (3) ¹³ C NMR	S 8
Figure S11. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (3) COSY	S9
Figure S12. 4-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)butan-1-amine (4) ¹ H NMR	S9
Figure S13. 4-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)butan-1-amine (4) ¹³ C NMR	S10
Figure S14. 4-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)butan-1-amine (4) COSY	S10
Figure S15. 4-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
<i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)butan-1-amine (5) ¹ H NMR	S11
Figure S16. 4-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
N-boc- N -(2,2,2-trifluoroethyl)butan-1-amine (5) ¹³ C NMR	S11
Figure S17. 4-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
<i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)butan-1-amine (5) COSY	S12
Figure S18. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)- <i>L</i> -lysinate (6) ¹ H NMR	S12
Figure S19. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)- <i>L</i> -lysinate (6) ¹³ C NMR	S13
Figure S20. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)- <i>L</i> -lysinate (6) COSY	S13
Figure S21. N^{ε} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -lysine (7) ¹ H NMR	S14
Figure S22. N^{ε} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -lysine (7) ¹³ C NMR	S14
Figure S23. N^{ε} -(2,2,2-Trifluoroethyl)- D , L -lysine (7) COSY	S15
Figure S24. N^{ε} -(2,2,2-Trifluoroethyl)- D , L -lysine (7) HSQC	S15

NMR Spectra of N^{ζ} -(2,2,2-trifluoroethyl)- <i>D</i> , <i>L</i> -homolysine and Intermediates (n = 3)	
Figure S25. 5-Amino-pentan-1-ol (1) ¹ H NMR	S16
Figure S26. 5-Amino-pentan-1-ol (1) ¹³ C NMR	S16
Figure S27. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) ¹ H NMR	S17
Figure S28. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) ¹³ C NMR	S17
Figure S29. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) COSY	S18
Figure S30. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) HSQC	S18
Figure S31. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (3) ¹ H NMR	S19
Figure S32. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (3) ¹³ C NMR	S19
Figure S33. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (3) COSY	S20
Figure S34. 5-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)pentan-1-amine (4) ¹ H NMR	S20
Figure S35. 5-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)pentan-1-amine (4) ¹³ C NMR	S21
Figure S36. 5-Bromo- <i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)pentan-1-amine (4) COSY	S21
Figure S37. 5-((2 <i>R</i> ,5 <i>S</i>)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
<i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)pentan-1-amine (5) ¹ H NMR	S22
Figure S38. 5-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
N-boc- N -(2,2,2-trifluoroethyl)pentan-1-amine (5) ¹³ C NMR	S22
Figure S39. 5-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-	
<i>N</i> -boc- <i>N</i> -(2,2,2-trifluoroethyl)pentan-1-amine (5) COSY	S23
Figure S40. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)- <i>L</i> -homolysinate (6) ¹ H NMR	S23
Figure S41. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)- <i>L</i> -homolysinate (6) ¹³ C NMR	S24
Figure S42. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)- <i>L</i> -homolysinate (6) COSY	S24
Figure S43. N^{ζ} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -homolysine (7) ¹ H NMR	S25
Figure S44. N^{ζ} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -homolysine (7) ¹³ C NMR	S25
Figure S45. N^{ζ} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -homolysine (7) COSY	S26
Figure S46. N^{ζ} -(2,2,2-Trifluoroethyl)- <i>D</i> , <i>L</i> -homolysine (7) HSQC	S26

LCMS Data and Fragmentation Pattern for Compounds 6	
Figure S47. LCMS trace and MS spectrum of Methyl N^{ζ} -(2,2,2-trifluoroethyl)-	
L-lysinate	S27
Figure S48. LCMS trace and MS spectrum of Methyl N^{ε} -Boc- N^{ε} -(2,2,2-trifluoroethyl)-	
L-homolysinate	S28

Figure S49	9. Boc fragmentation pattern observed in LCMS data for	
met	ethyl N^{ε} -Boc- N^{ε} -(2,2,2-trifluoroethyl)- <i>L</i> -lysinateS2	28
Figure S50	0. ¹ H NMR of the Partially Cleaved Impurity from the Separation of 6	
(n =	= 2, 26.1-27.1 min)	29
Figure S51	1. COSY of the Partially Cleaved Impurity from the Separation of 6	
(n =	= 2, 26.1-27.1 min)	29

Figure S1. Trifluoroacetaldehyde ethyl hemiacetal (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26)).

Figure S2. Trifluoroacetaldehyde ethyl hemiacetal (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84), residual EtOH (δ 58.63, 17.56)).

Figure S3. 4-Amino-butan-1-ol (1) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26)).

Figure S4. 4-Amino-butan-1-ol (1) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84)).

Figure S5. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (**2**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26)).

Figure S6. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (2) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal CDCl₃ (δ 77.48, 77.16, 76.84))

Figure S7. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (**2**) (COSY, pulse prog. *cosygpppqf*, CDCl₃, 400 MHz).

Figure S8. 4-((2,2,2-Trifluoroethyl)amino)butan-1-ol (2) (HSQC, pulse prog. *hsqcetgpsi2*, CDCl₃, 400 MHz)

Figure S9. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (**3**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S10. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (**3**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84))

Figure S11. 4-(Boc(2,2,2-trifluoroethyl)amino)butan-1-ol (**3**) (COSY, pulse prog. cosygpppqf, CDCl₃, 400 MHz)

Figure S12. 4-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**4**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S13. 4-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**4**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84))

Figure S14. 4-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**4**) (COSY, pulse prog. cosygpppqf, CDCl₃, 400 MHz)

Figure S15. 4-((2*R*,5*S*)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**5**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S16. 4-((2R,5S)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**5**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84))

Figure S17. 4-((*2R*,5*S*)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)butan-1-amine (**5**) (COSY, pulse prog. cosygpppqf, CDCl₃, 400 MHz)

Figure S18. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)-*L*-lysinate (**6**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S19. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)-*L*-lysinate (**6**) (¹³C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.48, 77.16, 76.84))

Figure S20. Methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)-*L*-lysinate (**6**) (COSY, pulse prog. cosygpppqf, CDCl₃, 400 MHz)

Figure S21. N^{ε} -(2,2,2-Trifluoroethyl)-*D*,*L*-lysine (**7**) (¹H, pulse prog. *noesygppr1d*, 90% H₂O/10% D₂O, 400 MHz, internal std. H₂O (δ 4.79))

Figure S22. N^{ε} -(2,2,2-Trifluoroethyl)-*D*,*L*-lysine (7) (¹³C, pulse prog. *zgpg30*, 90% H₂O/10% D₂O, 400 MHz, residual internal std. DSS (δ 0.0))

Figure S23. N^{ε} -(2,2,2-Trifluoroethyl)-*D*,*L*-lysine (7) (COSY, pulse prog. *cosygpppqf*, 90% H₂O/10% D₂O, 400 MHz)

Figure S24. N^{ε} -(2,2,2-Trifluoroethyl)-*D*,*L*-lysine (7) (HSQC, pulse prog. *hsqcetgpsi2*, 90% H₂O/10% D₂O, 400 MHz)

Figure S25. 5-Amino-pentan-1-ol (1) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S26. 5-Amino-pentan-1-ol (1) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S27. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (**2**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S28. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S29. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (**2**) (COSY, pulse prog. *cosygpppqf*, CDCl₃, 400 MHz)

Figure S30. 5-((2,2,2-Trifluoroethyl)amino)pentan-1-ol (2) (HSQC, pulse prog. *hsqcetgpsi2*, CDCl₃, 400 MHz)

Figure S31. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (**3**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S32. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (**3**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S33. 5-(Boc(2,2,2-trifluoroethyl)amino)pentan-1-ol (**3**) (COSY, pulse prog. *cosygpppqf*, CDCl₃, 400 MHz)

Figure S34. 5-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**4**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S35. 5-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**4**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S36. 5-Bromo-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**4**) (COSY, pulse prog. *cosygpppqf*, CDCl₃, 400 MHz)

Figure S37. 5-((2*R*,5*S*)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**5**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S38. 5-((2*R*,5*S*)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**5**) (13 C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S39. 5-((*2R*,5*S*)-5-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl)-*N*-boc-*N*-(2,2,2-trifluoroethyl)pentan-1-amine (**5**) (COSY, pulse prog. *cosygpppqf*, CDCl₃, 400 MHz)

Figure S40. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)-*L*-homolysinate (**6**) (¹H, pulse prog. *zg30*, CDCl₃, 400 MHz, residual internal std. CHCl₃ (δ 7.26))

Figure S41. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)-*L*-homolysinate (**6**) (¹³C, pulse prog. *zgpg30*, CDCl₃, 400 MHz, residual internal std. CDCl₃ (δ 77.47, 77.16, 76.84))

Figure S42. Methyl N^{ζ} -boc- N^{ζ} -(2,2,2-trifluoroethyl)-*L*-homolysinate (**6**) (COSY, pulse prog. cosygpppqf, CDCl₃, 400 MHz)

Figure S43. N^{ζ} -(2,2,2-Trifluoroethyl)-*D*,*L*-homolysine (**7**) (¹H, pulse prog. *noesygppr1d*, 90% H₂O/10% D₂O, 400 MHz, internal std. H₂O (δ 4.79))

Figure S44. N^{ζ} -(2,2,2-Trifluoroethyl)-*D*,*L*-homolysine (**7**) (¹³C, pulse prog. *zgpg30*, 90% H₂O/10% D₂O, 400 MHz, internal std. DSS(δ 0.0))

Figure S45. N^{ζ} -(2,2,2-Trifluoroethyl)-*D*,*L*-homolysine (**7**) (COSY, pulse prog. *cosygpppqf*, 90% H₂O/10% D₂O, 400 MHz)

Figure S46. N^{ζ} -(2,2,2-Trifluoroethyl)-*D*,*L*-homolysine (**7**) (HSQC, pulse prog. *hsqcetgpsi2*, 90% H₂O/10% D₂O, 400 MHz)

Figure S47. LCMS trace and MS spectrum of methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)-*L*-lysinate.

Figure S48. LCMS trace and MS spectrum of methyl N^{ζ} -(2,2,2-trifluoroethyl)-*L*-homolysinate.

Figure S49. Boc fragmentation pattern observed in LCMS data for methyl N^{ε} -boc- N^{ε} -(2,2,2-trifluoroethyl)-*L*-lysinate.

Figure S50. ¹H NMR of the of the Partially Cleaved Impurity from the Separation of **6** (n = 2, 26.1-27.1 min)

Figure S51. COSY of the of the Partially Cleaved Impurity from the Separation of **6** (n = 2, 26.1-27.1 min)