Chemistry 210 -- Winter Semester 1997 Chapter 10

Basis of Spectroscopy

The characteristic frequency of the absorption (or emission) between two states is measured. The "two states" can be due to many different causes

electronic states	UV/Vis spectroscopy
vibrational states	IR spectroscopy
rotational states	Microwave spectroscopy
NMR	nuclear magnetic moment alignment
ESR	electron magnetic moment alignment

1. Draw a picture of two states and indicate transition.

2. A **spectrum** records the intensity of the absorption as a function of wavelength or frequency or some paramter derived from the frequency.

Physical Basis of NMR Spectroscopy

Introduction

- 1946 First observation of effect Bloch, Hansen, Packard Purcell, Torrey, Pound
- 1952 Nobel Prize for Bloch and Purcell
- 1970 Two-dimensional methods (two frequency axes)
- 1991 Nobel Prize for Ernst

Nuclear Angular Momentum and Magnetic Moment

Angular monentum P is quantized according to $P = [I (I+1)]^{0.5} h/2$ I = angular momentum quantum number or <u>nuclear spin</u> Allowed values: I = 0, 0.5, 1, 1.5, ... 6 I and P cannot be predicted.

The magnetic moment μ is proportional to the angular momentum and the proportionality is given by the gyromagnetic ratio .

 $\mu = P$

No spin, no magnetic moment

¹²C and ¹⁶O do not have spins, that is just too bad!

The sign of the gyromagnetic ratio can be negative for the electron for ^{15}N for ^{29}Si

Nuclide	Spin I	Electric quadrupole moment ^{a)} [eQ] [10 ⁻²⁸ m ²]	Natural abundance ^{a)} [%]	Relative sensitivity ^{b)}	Gyromagnetic ratio γ^{a} [10 ⁷ rad T ⁻¹ s ⁻¹]	NMR frequency [MHz] ^{b)} $(B_0 = 2.3488 \text{ T})$
'Η	1/2	_	99.985	1.00	26.7519	100.00
2 H	1	2.87 x 10 ⁻³	0.015	9.65 x 10 ⁻³	4.1066	15.351
$^{3}\mathrm{H}^{\mathrm{c}}$	1/2	_	_	1.21	28.5350	106.664
⁶ Li	1	-6.4 x 10 ⁻⁴	7.42	8.5 x 10 ⁻³	3.9371	14.716
$^{10}\mathbf{B}$	3	8.5 x 10 ⁻²	19.58	1.99 x 10 ⁻²	2.8747	10.746
$^{11}\mathbf{B}$	3/2	4.1 x 10 ⁻²	80.42	0.17	8.5847	32.084
¹² C	0	-	98.9	-	-	-
¹³ C	1/2	-	1.108	1.59 x 10 ⁻²	6.7283	25.144
¹⁴ N	1	1.67 x 10 ⁻²	99.63	1.01 x 10 ⁻³	1.9338	7.224
¹⁵ N	1/2	-	0.37	1.04 x 10 ⁻³	-2.7126	10.133
¹⁶ O	0	-	99.96	-	-	-
¹⁷ O	5/2	-2.6 x 10 ⁻²	0.037	2.91 x 10 ⁻²	-3.6280	13.557
¹⁹ F	1/2	-	100	0.83	25.1815	94.077
²³ Na	3/2	0.1	100	9.25 x 10 ⁻²	7.0704	26.451
²⁵ Mg	5/2	0.22	10.13	2.67 x 10 ⁻³	-1.6389	6.1195
²⁹ Si	1/2	-	4.70	7.84 x 10 ⁻³	-5.3190	19.865
³¹ P	1/2	-	100	6.63 x 10 ⁻²	10.8394	40.481
³⁹ K	3/2	5.5 x 10 ⁻²	93.1	5.08 x 10 ⁻⁴	1.2499	4.667
⁴³ Ca	7/2	-5.0 x 10 ⁻²	0.145	6.40 x 10 ⁻³	-1.8028	6.728
⁵⁷ Fe	1/2	-	2.19	3.37 x 10 ⁻⁵	0.8687	3.231
⁵⁹ Co	7/2	0.42	100	0.28	6.3015	23.614
¹¹⁹ Sn	1/2	_	8.58	5.18 x 10 ⁻²	-10.0318	37.272
¹³³ Cs	7/2	-3.0 x 10 ⁻³	100	4.74 x 10 ⁻²	3.5339	13.117
¹⁹⁵ Pt	1/2	-	33.8	9.94 x 10 ⁻³	5.8383	21.499

Table 1-1. Properties of some nuclides of importance in NMR spectroscopy.

^{a)} Values from [1, 2].

^{b)} Values from the Bruker Almanac, 1992; sensitivity is expressed relative to ${}^{1}H (= 1)$ for constant field and equal numbers of nuclei. ^{c) 3}H is radioactive.

Nuclei in a Static Magnetic Field

The **angular momentum P** can have only certain **components** P_z along the direction of the magnetic field.

$$P_z = m h/2$$

 $m = I, I-1, \dots -I$
(2I+1) possibilities

<u>Example 1:</u> Show schematic for half-spin nuclei such as 1 H and 13 C. <u>Example 2:</u> Show schematic for full-spin nuclei such as 2 H and 14 N.

The **magnetic moment** μ_z in the field direction (the component of the magnetic moment that matters for the energy) is

$$\mu_z = P_z$$
$$\mu_z = m h/2$$

Example 1: Show schematic for half-spin nuclei such as ¹H and ¹³C.

In the classical picture, the magnetic dipole precesses around the direction of the magnetic field in any direction with the Larmor frequency, $L = |/2| B_0$. In the quantum-picture only some directions are allowed.

Zeeman Effect

Energy of a magnetic dipole in a magnetic field: $E = -\mu B_0$ The nuclear Zeeman levels: $E = -\mu_z B_0 = -(m h/2) B_0$

For spin I = 0.5 nuclei (draw energy level diagram) Level 1: m = 1/2, μ_z is parallel to field () Level 2: m = -1/2, μ_z is antiparallel to field ()

For I = 1 nuclei (draw energy level diagram) m = +1, 0, -1

Draw picture showing the B-field dependency of $E = -\mu B_0$

Populations of the energy levels N /N = exp(- E/k_BT) = 1 - E/k_BT = 1 - (h/2 B_0) / (k_BT) The population difference is in the ppm region. Very small.

Magroscopic Magnetization

- N with magnetic moment up > N with magnetic monents down
- N and N nicely distributed, resulting magnetization to top: Mo.

Basic Principles of the NMR Experiment

Irradiate with radiowaves that fulfill the *resonance condition* $_{L} = |/2| B_{0}$ causes *spin inversions* or *spin flips* until *saturation* occurs (e.g. N = N).

In systems with I > 0.5, there are more than two levels. Transitions can occur only with | m| = 1. Example: ¹⁴N with I=1, three levels, no transition from bottom to very top.

The CW Spectrometer

Suitable for sensitive nuclei with I=0.5 with large magnetic moments (¹H, ¹⁹F, ³¹P)

Figure 1-6.

Schematic arrangement of an NMR spectrometer of the continuous wave (c.w.) type a sample tube; b magnet; c sweep coils; d receiver coil; e transmitter; f amplifier; g oscilloscope; h recorder. In principle this diagram also serves to illustrate the arrangement in a pulse spectrometer, with the modifications that "e" becomes a radiofrequency pulse generator, and "f" is replaced by a more complex system of electronic units and a computer for recording, storing and processing the NMR signals (see also Section 1.5.3).

a magnet

a radiofrequency transmitter

a receiver (at right angle to transmitter)

Modes of operation

vary magnetic field (field sweep) vary the transmitter frequency (frequency sweep)

0		
	Н	¹³ C
1.41	60	15.1
2.35	200	50.3
5.87	250	62.9
7.05	300	75.4
11.74	500	125.7
14.09	600	150.9

¹H and ¹³C resonance frequencies at different magnetic flux densities

The Chemical Shift

The field at the nucleus depends on its chemical environment $B_{eff} = B_0 - B_0 = (1 - B_0)$

is the shielding constant (order of magnitude 10⁻⁵)

The resonance frequency depends on the shielding

 $_1 = /2$ (1-) B_0

The 90 MHz ¹ H-NMR spectrum at $B_0 = 2.11$ T (1 T = 10,000 Gauss)			
For comparison, the static magnetic field of the earth is about 500 mG.			
TMS frequency	90,000,000 Hz	(TMS is Tetramethylsilane, Me_4Si)	
CH ₃ Br	90,000,237 Hz		
CH ₂ Br ₂	90,000,441 Hz		
CHBr ₃	90,000,614 Hz		

The Chemical Shift $\delta\text{-scale}$

<u>Advantage 1:</u> The -scale uses relative values rather than absolute resonance frequency so as to become independent of the magnetic field of the device.

<u>Advantage 2:</u> The -scale adjusts the magnitude such that we can use "normal numbers" to talk about the chemical shifts.

```
= [(_{sample} - _{reference}) / _{reference})] * 10^{6}
```

The 90 MHz ¹H-NMR spectrum at $B_0 = 2.11$ T (1 T = 10,000 Gauss)

	<u>Absolute Freq.</u>	-Scale
TMS frequency	90,000,000 Hz	0.00 by definition
CH ₃ Br	90,000,237 Hz	2.63 ppm
CH ₂ Br ₂	90,000,441 Hz	4.90 ppm
CHBr ₃	90,000,614 Hz	6.82 ppm

Local Contributions to Shielding

σ_{dia} = diamagnetic shielding

external field induces ring current which produces a magnetic field that counteracts.

diamagnetic shielding increases with number of electrons.

for H atom:	17.8 10 ⁻⁶
for C atom:	260.7 10-6
for P atom:	961.1 10 ⁻⁶

σ_{para} = paramagnetic shielding

opposite sign compared to diamagnetic contribution

always smaller in magnitude $|_{para}| < _{dia}$

depends on excitation energies and number of low lying excited states

large excitation energies for H atom, paramagnetic contribution very small small excitation energies for C atom, paramagnetic contribution can dominate trends

Charge dependence of the shielding

Only the diamagnetic shielding depend on the electron density around the nucleus. A relation between the charge of an atom and its chemical shift exists only in cases where the paramagnetic shielding is clearly unimportant. This is true for H-atoms but it is not usually true for other atoms.

Fo the H-atoms, the paramagnetic contributions do not play any significant role because the excitation energies into C-H antibonding orbitals have low probabilities.

Non-Local Contributions to Shielding

σ_N = magnetic anisotropy of neighboring groups

Multiply bonded systems cause anisotropic shielding behaviour Can be described with **double-cones** where

- positive region is additionally shielded
- negative region is shielded less

Example 1: Acetylene

+ region at the H atoms

small shielding expected (acidic H) with = 5.28 ppm

large shielding actually found with = 2.88 ppm

Example 2: CC Double Bonds and Carbonyls

+ region perp. to multiple bond

- region includes the H atoms

aldehyde hydrogens are very deshielded and appear at = 9 - 10 ppm

Example 3: Cyclohexane

+ region perp. to single bond axial protons are more strongly shielded

$\sigma_{\mathbf{R}}$ = Ring Current Effects

Example 1: Benzene

protons in alkenes occur already at higher chemical shifts than expected protons in benzene (7.27) are even less shielded than in alkenes (ethene 5.28)

B field aligned with symmetry axis and induced ring current

that is field enforcing outside the ring

that is field reducing inside the ring

+ region on top of the ring

- region in the equator of thr ring

Spin-Spin Coupling

Coupling between Nuclei because of Electron-Nuclear Interactions

Interaction between the electrons and the nucleus: Fermi contact term.

The Fermi contact term is the direct interaction between the magnetic moment of the nucleus and the bonding electrons in s-states. (H: 1s; C: 2s) The Dirac Vector model is based on the assumption that there is a preference for the magnetic moments of the nucleus and the close electron to be antiparallel. By this mechanism, **the nuclei know about each other, they are coupled**. If the coupling is over one bond, then the nuclei will be anti-parallel (positive coupling). With the "modified Hund's rule", we find by the same model that ²J coupled H nuclei are parallel to each other (negative J value).

Figure 3-4. Indirect spin-spin coupling in the HD molecule, transmitted through the bonding electrons. The sketch shows the energetically preferred configuration of the nuclear and electron spins.

Figure 3-5. Indirect spin-spin coupling through two bonds in a CH_2 group. The sketch shows the energetically preferred configuration of the nuclear and electron spins.

Nomenclature for Coupling

 $^{n}J(X,Y)$ where n is the number of bonds between the coupled nuclei X and Y.

Coupling Mechanism

- * Independent of applied field
- * Indirect (that is through bonds not space)

The spin-spin coupling between nuclei that are chemically and magnetically equivalent does not affect the spectrum.

The spin-spin coupling between nuclei that are chemically and magnetically **not** equivalent **does affect** the spectrum.

Chemical and Magnetic Equivalence

<u>Chemical Equivalence:</u> Two nuclei are equivalent if they have the same resonance frequency.

* equivalent by symmetry (H2/H6 and H3/H5 in 3; H4/H6 in 4)

* accidently equivalent (isochronous)

* H-atoms in 1,1 dichloro and 1,1 difluoroethene are chemically equivalent

<u>Magnetic Equivalence</u>: Chemical equivalence <u>and</u> their couplings with other nuclei in the molecule are the same (couple to **the same** atoms).

* H4/H6 in **4** because they couple the same with H5.

* NOT the pairs in **3**! Because the couplings ${}^{2}J(H3,H2)$ and ${}^{5}J(H5,H2)$ are different.

* H atoms in 1,1-dichloroethene are magnetically equivalent

* H atoms in 1,1-difluoroethene are NOT magnetically equivalent because they couple in different ways with the two F-atoms present. ${}^{3}J_{cis}$ and ${}^{3}J_{trans}$ differ.

Nomenclature: Chem. equivalent but magn. non-equivalent nuclei are distinguished by a prime.

* 1 is a AX₂ system (or AB₂)

- * **2** is a ABB'CC' system
- * 3 is a AA'XX' system
- * **4** is a AX_2 system (or A_2B)

* 1,1-dichloroethene is an A₂ system, 1,1-difluoroethene is a AA'XX' system.

The AX Spin System

Note the selection rule m = +/-1.

Figure 4-3.

A: Energy level scheme for a two-spin AX system for the cases $J_{AX} = 0$, $J_{AX} > 0$ and $J_{AX} < 0$. The arrows indicate the spin orientations (*z*-components). A₁, A₂, X₁ and X₂ are the allowed nuclear resonance transitions for the A and X nuclei; B: stick spectrum and signal assignments for positive or negative J_{AX} .

Figure 4-4.

Definition of progressively and regressively interconnected transitions. A: Energy level scheme for a two-spin AX system. B: Example of a progressively connected pair of transitions. C: Example of a regressively connected pair of transitions.

The AB Spin System

close to J makes the AB system. Example: 3-chloro-6-ethoxypyridazine

The AX and AB systems show that the spin-spin coupling

- affects a "splitting" of the resonance signal and
- affects the intensity of the lines is affected.

The Simple Spin-Spin Coupling Rules

Consider only ³J(H,H). This is called **vicinal** coupling. observe H'-C-C-H" not observed H'-C-O-H" and H'-C-N-H" (fast proton exchange)

Splitting Pattern

The chemically equivalent H-atoms do not cause a splitting.

The splitting pattern is a related to the number of equivalent H-atoms at the neigboring atom.

0 H atoms as neighbor	singlet	
1 H atom as neighbor	dublet	(e.gC <u>H</u> -CH-)
2 H atoms as neighbors	triplet	(e.gC <u>H</u> -CH ₂ -)
3 H atoms as neigbors	quartet	(e.gC <u>H</u> -Me)
4 H atoms as neigbors	quintet	(e.gCH ₂ -C <u>H</u> -CH ₂ -)
5 H atoms as neigbors	sextet	
6 H atoms as neigbors	septet	(e.g. Me-C <u>H</u> -Me)
n H atoms as neighbors	n+1 lines	

Intensity of the Multiplet Lines: Pascal Triangle

The intensity of all lines combined is proportional to the number of H-atoms responsible for the resonance.

Spectrum Interpretation and Constitution Analysis

(Conformation analysis also is possible but will not be discussed here)

Position of signal == chemical shift

use tables of typical chemical shifts for analysis tells about connectivity to electronegative atoms, functional groups, aromatic rings

Area of signal == integration

number of this type of H-atoms

Splitting of signal == multiplicity

connectivity information

... and now: Lots of exercise

look up structures and predict their spectra (do this first) look up spectra and deduce the structure (this is the ultimate goal)

Spectrum 1: Propanoic Acid (ethyl group, acidic H does not show)Spectrum 3: Propanoic acid methyl ester (ethyl group plus singlet)Spectrum 7: 2-Bromopropane (contains a septet)Spectrum 17: Acetamide (singlet, amino H do not show)

Pair of Structure Isomers Spectrum 9: Phenylacetone ectrum 81: 3-Chloropropene (ABDX ₂ system)

Spectrum 92: Me₂C=CH-C(O)-Me (two non-equivalent terminal Me)