Assignment #4: Chemical Kinetics of Aspirin Hydrolysis

Experimental data are provided on the back of the page. To guide your review of chemical kinetics, two links are provided on the "Assignments" page of the course web site.

- (a) <u>Determination of the Order of Reaction (Sheet #1)</u>. Enter the data for experiment #1 on sheet #1 in columns A and B, compute the values of ln[Aspirin]) and 1/[Aspirin]) in columns C and D, and create <u>marked (X,Y) scatter plots</u> for (*t*, [Aspirin]), (*t*, ln[Aspirin]), and (*t*, 1/[Aspirin]). What is the order of the reaction?
- (b) Determination of the Reaction Rate Constants k' and k (Sheet #2). Copy appropriate data from sheet #1. Pseudo-first-order kinetics apply, i.e., [aspirin] = [aspirin]_0 exp(-k't) and $\ln[aspirin] = \ln[aspirin]_0 k't$, and k = k'/55.55. Determine the pseudo-first-order reaction rate constant k' in three ways: [1] One commonly determines the rate constant k as the slope of the linear regression of the $(t, \ln[Aspirin])$ scatter plot. [2] Alternatively, one can directly fit an exponential function to the (t, [Aspirin]) data. [3] Use the excel function SLOPE and the $(t, \ln[Aspirin])$ data. With the concentration of water (55.55 mol/L), also determine the second-order rate constant k = k'/55.55. Report k' and k with the appropriate units.
- (c) Determination of the Activation Parameters (Sheet #3). Enter the data of experiment #2 on sheet #3 in columns A and B. Use the Arrhenius and Eyring equations to determine the activation parameters E_{act} , H_{act} and S_{act} and report the resulting values with the correct units.

<u>Submission & Deadline</u>: The assignment must be completed with MS Excel 2007. Submit one Excel file "A4_'your name'.xlsx" with (a) on sheet #1, (b) on sheet #2, and (c) on sheet #3 by Tuesday, 02/23/10, midnight. Bring one hardcopy to class on Wednesday, 02/24/10.

Table 1. Measured Data from Experiment #1. Concentrations of aspirin measured as a function of time at 39 °C after one tablet (335 mg) of aspirin was dissolved in 1 L water.

MM(aspirin) = 180.157 g/mol.

14114(d3p1111) = 100.137 g/11101.					
t	[aspirin]	In[aspirin]	1/[aspirin]		
[sec]	[mmol/liter]				
0	1.80398				
600	1.25236				
1200	0.86942				
1800	0.60357				
2400	0.41901				
3000	0.29089				
3600	0.20194				
4200	0.14019				
4800	0.09732				
5400	0.06756	6756			
6000	0.04690	4690			
6600	0.03256				
7200	0.02261				
7800	0.01569				
8400	0.01089				
9000	0.00756				
9600	0.00525				
10200	0.00365				
10800	0.00253				

Table 2. Measured Data from Experiment #2. Second-order reaction rate constants as a function of reaction temperature.

т [°С]	<i>k</i> [10 ⁴ min ⁻¹]	<i>k</i> [sec ⁻¹]	In[<i>k</i>]	In[<i>k/T</i>]
39	6.57			
47.25	14.48			
55.1	29.18			