

Fig. 3.37. (a) The one-pulse ¹H-coupled spectrum of a mixture of CHCl₃, CH₂Cl₂, and CH₃OH; (b) INEPT spectrum of the same sample, with $t_D = 4J^{-1}$ set for J = 175 Hz.

INEPT of a Mixture Regular spectrum on the bottom. INEPT on top. Which set of lines belongs to what compound? How can you determine the coupling constants in each case (as the difference of what lines)?

INEPT of a Quintet

The central line is missing, the outer ones are stronger. The example also demonstrates the use of the INEPT in ¹⁵N NMR.

Fig. 3.38. The 40.6 MHz 15 N spectrum of 15 NH₄+ in water, (a) without polarization transfer or NOE, and (b) using INEPT.