Chemistry 416, Fall Semester 1993, Dr. Glaser

Quiz III: "NMR Spectroscopy", Monday, November 22, 1993, 20 minutes, not announced Your Name:

Question 1. Terminology. (9 points)

Nuclei with an intrinsic ______ **P** show an associated magnetic moment μ proportional to **P**, μ = **P**, where is the ______ constant. In the presence of an external magnetic field **B**, different energy levels result depending as to how the z-component of **P** is aligned with the external field. For spin 1/2 nuclei, there are two levels and the level splitting in a magnetic field is called the ______ effect.

In a magnetic field, a macroscopic magnetization occurs that is parallel to the external field. A 90_x pulse rotates the magnetization into a plane that is perpendicular to the **B** field. The relaxation of the magnetization has two components with different relaxation times: T_1 is the spin-lattice or ______ relaxation time and T_2 is the ______ or transverse relaxation time.

The chemical shift depends on the shielding which is the sum of the following six terms. For the first four terms, state what each accounts for:

- dia: _____ para: _____ N: _____ R: _____
- e: <u>electric field effects</u> i:

intermol. interactions (solv & H-bond.)

Question 2. Anisotropy. (4 points)

[18]-Annulene shows two ¹H-NMR signals at
+8.9 and -1.8 ppm. Draw the molecule and assign the signals. Briefly explain your assignment.

			OVER	
Points for Question 1:	/9			
Points for Question 2:	/4			
Points for Question 3:	/12	Total Points:	/25	

Question 3. Symmetry. (12 points)

For each of the following compounds, give the number of NMR signals (do not worry about multiplicity!) For the indicated atoms, state whether they are *homotopic*, *enantiotopic* or *diastereotopic*.

