Chemistry 416, Fall Semester 1997, Dr. Glaser

Quiz II: "Mass Spectroscopy", Monday, December 8, 1997, 20 minutes, sort of announced

Your Name: Rainer Glaser's Answer Key

Question 1. Terminology.

Fill in the blanks as required (or chose from the selection given in parentheses). (15 points)

To complete this question, give the full names of the following abbreviations.

SIMS: Secondary Ion Mass Spectroscopy

FAB: Fast Atom Bombardment

FD: Field DesorptionEI: Electron IonizationLD: Laser Desorption

OVER

Points for Question 1:	/15		
Points for Question 2:	/7		
Points for Question 3:	/8		
Points for Question 4:	/10	Total Points:	/40

Question 2. Electrospray Ionization.

Describe the principle of ESI with as many appropriate technical terms as possible. (7 pts)

Technical term for reaction type:

Generate aerosol in the presence of a strong electric field: highly charged drops.

The highly charged drops loose solvent and undergo "Coulomb Explosion"

The droplets loose solvent or undergo DI.

Question 3. Negative Ions.

In the lecture, we discussed several ways to generate negative ions. Among the examples were two ways for the generation of 2,4,6-trichlorophenoxide from the corresponding phenol. Show the ionizing reaction for one of these cases <u>and</u> write down the technical term used to describe the type of reaction for that case. (8 points)

Technical term for reaction type:

Give any of the answers provided by Lambert's book.

Question 4. Isotopic Substitution Patterns. (10 points)

Predict the rel. intensities of the (M), (M+1), & (M+2) peaks for $C_{10}H_{22}$ based on the natural abundancies of the heavy isotopes.

```
(M): (M+1): (M+2) = 100: 11 (10*1.1%) : 0.12 (10*[1.1%]^2)
```

The (M+2) peak reflects the occurrence of _____

Predict the rel. intensities of the (M), (M+1), (M+2), (M+3), & (M+4) peaks for $C_2H_4Br_2$ based on the natural abundancies of the heavy isotopes.

```
(M): (M+1): (M+2): (M+3): (M+4) = 100: 2.2: 200: 4.4: 100
```

M: light iso.; M+1: C13; M+2: Br81; M+3: 13C+Br81; M+4: 2Br81 (first approx. to answer)