Chemistry 416, Fall Semester 1997, Dr. Glaser

Quiz 1: "NMR Spectroscopy", Monday, September 22, 1997, 35 minutes, announced.
Your Name:

Question 1. Coupling in Difluoro Compounds. (12 points)

(a) We talked about the 1,1-isomer and we decided that H_{a} and H_{b} are chemically \qquad (equi., not equiv.) because they were related by \qquad (no, a C_{s}, a C_{2}) symmetry element. The term "homotopic" \qquad (would, would not) apply to H_{a} and H_{b}. Moreover, it is clear that H_{a} and H_{b}
\qquad (are, are not) magnetically equivalent and hence the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum will be \qquad (simple, complex). (5 points)
(b) Now let's turn to the two 1,2-isomers. The atoms H_{a} and H_{b} in the cis isomer are chemically equivalent because of the \qquad symmetry element. Because of this chemical equivalence, the H nuclei are chemical shift equivalent and they \qquad (are, are not) magnetically equivalent. The trans isomer represents a \qquad $\left(\mathrm{A}_{2} \mathrm{X}_{2}, \mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\right)$ spin system. (4 points)
(c) For the benzene compound, the two F-atoms \qquad (are, are not) chemically equivalent and they \qquad (are, are not) magnetically equivalent since the __J(F,H) coupling constant (give the value of " n " in fromt of the J) is the same for both H / F couplings. (3 points)

OVER \Rightarrow

Points for Question 1:	$/ 12$		
Points for Question 2:	$/ 12$		
Points for Question 3:	$/ 12$		
Points for Question 4:	14	Total Points:	$/ 40$

For each of the estimates you make in Questions 2 and 3, show your work (give equation and values of the various parameters) and do state your source (e.g. "Pretsch C194" or "Friebolin, p. 139").

Question 2. H-NMR Increments. (12 points)
Estimate the chemical shifts of the methyl Hatoms and of the vinylic H -atoms in cis-crotonic acid.

Question 3. ${ }^{13} \mathrm{C}$-NMR Increments. (12 points)
Estimate the chemical shifts of the methyl-C, the $\alpha-\mathrm{C}$ and the acid-C in crotonic acid.

$\mathrm{H}_{3} \mathbf{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$

Methyl-H chemical shift:	$\mathrm{H}_{3} \mathbf{C}$ - chemical shift:
H_{a} chemical shift:	$=\mathbf{C H}$ - chemical shift:
H_{b} chemical shift:	-COOH chemical shift:

Question 4. Ring Current Effects. (4 points)

A spectacular example of shielding and deshielding by ring currents is furnished by some of the annulenes. At low temperatures, the protons outside of the ring of [18]annulene are strongly \qquad and occur at much \qquad (lower, higher) chemical shift and those inside are strongly
\qquad and occur in the \qquad (positive, negative) chemical shift region (rel. to TMS). (1 point each)

