
Chemistry 416, Fall Semester 1997, Dr. Glaser

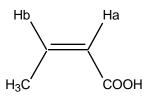
Quiz 1: "NMR Spectroscopy", Monday, September 22, 1997, 35 minutes, announced.

Your Name:

Question 1. Coupling in Difluoro Compounds. (12 points)

(a) We talked about the 1,1-isomer and we decided that H_a and H_b are chemically ______ (equi., not equiv.) because they were related by ______ (no, a C_s , a C_2) symmetry element. The term "homotopic" ______ (would, would not) apply to H_a and H_b . Moreover, it is clear that H_a and H_b ______ (are, **are not**) magnetically equivalent and hence the ¹H-NMR spectrum will be ______ (simple, **complex**). (5 points)

(b) Now let's turn to the two 1,2-isomers. The atoms H_a and H_b in the *cis* isomer are chemically equivalent because of the _____C_s or C_2____ symmetry element. Because of this chemical equivalence, the H nuclei are chemical shift equivalent and they _______ (are, **are not**) magnetically equivalent. The *trans* isomer represents a _______ (A₂X₂, **AA'XX'**) spin system. (4 points)

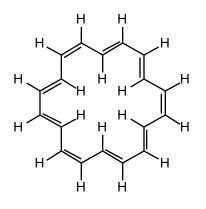

(c) For the benzene compound, the two F-atoms ______ (are, are not) chemically equivalent and they ______ (are, are not) magnetically equivalent since the _4_J(F,H) coupling constant (give the value of "n" in fromt of the J) is the same for both H/F couplings. (3 points)

			OVER
Points for Question 1:	/12		
Points for Question 2:	/12		
Points for Question 3:	/12		
Points for Question 4:	/4	Total Points:	/40

OVER

For each of the estimates you make in Questions 2 and 3, show your work (give equation and values of the various parameters) and do **state your source** (e.g. "Pretsch C194" or "Friebolin, p. 139").

Question 2. H-NMR Increments. (12 points) Estimate the chemical shifts of the methyl Hatoms and of the vinylic H-atoms in *cis*-crotonic acid.



Question 3. ¹³C-NMR Increments. (12 points) Estimate the chemical shifts of the methyl-C, the -C and the acid-C in crotonic acid.

H₃C-CH=CH-COOH

Methyl-H chemical shift: F. p. 141/2 0.23 + 1.32 = 1.55 ppm	H ₃ C- chemical shift: F. p. 150 or P. C10 -2.4 + 19.5 - 2.8 = 14.4 ppm
H _a chemical shift:	=CH- chemical shift:
F. p. 142: $5.28 + 0.69 + 0 - 0.29 = 5.68$ ppm	F. p. 152: 123.3 + 4.2 - 7.9 = 119.6 ppm
P. H225: $5.25 + 0.80 + 0 - 0.28 = 5.77$ ppm	P. C90: 123.3 + 5.0 - 7.4 = 120.9 ppm
H _b chemical shift:	-COOH chemical shift:
F. p. 142: $5.28 + 0.39 + 0.44 = 6.11$	P. C186: 171.7
P. H215: $5.25 + 0.32 + 0.45 = 6.02$ ppm	P. C184: 166 + 5.0 - 1.0 = 170 ppm

Question 4. Ring Current Effects. (4 points)

A spectacular example of shielding and deshielding by ring currents is furnished by some of the annulenes. At low temperatures, the protons outside of the ring of [18]annulene are strongly <u>deshielded</u> and occur at much <u>higher</u> (lower, higher) chemical shift and those inside are strongly <u>shielded</u> and occur in the <u>negative</u> (positive, negative) chemical shift region (rel. to TMS). (1 point each)