Chemistry 416 "Spectroscopy" Fall Semester 1993 Dr. Rainer Glaser

Second 1-Hour Examination "IR/Raman Spectroscopy"

Monday, October 4, 1993, 8:40 - 9:30

Question 1	35	
Question 2	40	
Question 3	25	
Total		

Question 1. Interpretation of IR and Raman Spectra. (35 points)

Mostly taken from the required texts and the assignments. As always, it pays to study and to do the homework! Five parts to this question.

(a) The spectrum is shown of an aromatic toluene derivative with the formula C_8H_7N . Give the structural formula of this compound and, in particular, indicate the bands based on which you assign the correct substitution pattern. (5 points)

(b) The spectra are shown of $C_5H_{11}COOCH_3$, C_4H_9 -O- C_4H_9 and C_4H_6 -CEt-CH₂OH (not necessarily in this order!). Indicate which spectrum corresponds to which compound. Clearly indicate all the bands on which you base your assignment and state what types of modes they are (stretch, bend, and so on). When appropriate, state whether the peaks correspond to "symmetric" or "antisymmetric" modes. Write on spectra. (12 points)

(c) The IR and Raman spectra are shown of a compound with formula $C_6H_5NO_2$. Indicate which spectrum is the IR and which is the Raman spectrum. Indicate the significant peaks and state what types of normal modes they represent. Briefly explain your assignments. (8 points)

(d) The IR spectrum of an unknown is shown. The unknown contains only C, O and H, it is high-boiling (206 °C), and its molecular weight is 138. What is it? Argue briefly. (10 points)

Argue:

Question 2. Normal Mode Analysis.

Let's consider the IR and Raman spectra of O=C=O, S=C=S, and O=C=S. For each system, the results of *ab initio* calculations (RHF/6-31G*) for the linear structures are summarized below. You will find the Cartesian coordinates and the vibrational information below. (You are familiar with the format because of previous assignments associated with Chemistry 416.)

 \sim

				U=(C=O				
STOICHIOMET FRAMEWORK G DEG. OF FRE FULL POINT LARGEST ABE LARGEST CON	TRY C GROUP D EEDOM GROUP CLIAN SU ICISE AB	02)*H[O(C), 1 JEGROUP BELIAN SU Standarc	.C*(0.0 JBGROUP a orient)] D*H D2H C2 tation:	NOP 8 NOP 8 NOP 2				
Center Number	Atomic Number		Co X	pordinat	es (Ang Y	stroms) Z			
1 2 3	8 6 8		0.00000	00 0. 00 0. 00 0. 00 0. 00 0.	000000 000000 000000	1.1432 0.0000 -1.1432	272 000 272		
Frequencies Red. masses Frc consts IR Inten Raman Activ	ses (AM	Ctivitie IU), ford PIU 45.8556 12.8774 4.2207 68.9315 0.0000	ce const	(AMU), tants (m	Raman d Dyne/A) 2 PIU 745.855 12.877 4.220 68.931 0.000	epolariza and norm 6 4 7 5 0	ntion rat nal coord 1!	zios, dinates 3 SGG 518.414 15.994 21.727 0.000 12.331	: 9 9 7 0 5
Depolar Atom AN 1 8 2 6 3 8	 X 0.33 -0.88 0.33	0.0000 Y 0.00 0.00 0.00	Z 0.00 0.00 0.00	X 0.00 0.00 0.00	0.000 Y 0.33 -0.88 0.33	0 Z 0.00 0.00 0.00	X 0.00 0.00 0.00	0.193 Y 0.00 0.00 0.00	8 -0.71 0.00 0.71
Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar Atom AN 1 8 2 6 3 8	s 25 s 9 7 X 0.00 0.00 0.00	4 SGU 84.8705 12.8774 50.6938 88.5750 0.0000 0.0000 Y 0.00 0.00 0.00	Z -0.33 0.88 -0.33						

			S=C	=S				
STOICHIOMETH FRAMEWORK GH DEG. OF FREH FULL POINT (LARGEST ABEH LARGEST CON(RY CS2 ROUP D*H[O(EDOM 1 GROUP LIAN SUBGROU CISE ABELIAN Stand	C),C*(S.S P SUBGROUP ard orien)] D*H D2H C2 tation:	NOP 8 NOP 8 NOP 2				
Center 2 Number 1	Atomic Number	C X	oordinate	es (Angs Y	stroms) Z			
1 2 3	16 6 16	0.0000 0.0000 0.0000	00 0.0 00 0.0 00 0.0	000000000000000000000000000000000000000	1.5445 0.0000 -1.5445	65 00 65		
Harmonic fre Raman scatte reduced mass Frequencies Red. masses Frc consts IR Inten Raman Activ	equencies (c ering activi ses (AMU), f 	<pre>m**-1), I ties (A** orce cons 18 42 65 37 00</pre>	R intensi 4/AMU), F tants (mL 4	ties (H aman de byne/A) 2 PIU 445.4418 13.3142 1.5565 0.0037	KM/Mole), epolariza and norm 3 2 5 7 0	tion ra al coord	tios, dinates 3 SGG 724.996 31.972 9.901 0.000 19.373	: 4 1 3 0 9
Depolar Atom AN 1 16 2 6 3 16	0.00 X Y 0.00 0.18 0.00 -0.97 0.00 0.18 4 SCII	00 Z 0.00 0.00 0.00	X 0.18 -0.97 0.18	0.0000 Y 0.00 0.00 0.00	Z 0.00 0.00 0.00 0.00	X 0.00 0.00 0.00	0.260 Y 0.00 0.00 0.00	4 Z -0.71 0.00 0.71
Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar Atom AN 1 16 2 6 3 16	1583.04 13.31 19.65 1505.49 0.00 X Y 0.00 0.00 0.00 0.00 0.00 0.00	30 42 85 66 00 00 Z -0.18 0.97 -0.18						

			O=C	C=S				
STOICHIOMETH FRAMEWORK GH DEG. OF FREH FULL POINT (LARGEST ABEH LARGEST CON(RY COS ROUP C*V[C*(EDOM 2 GROUP LIAN SUBGROUP CISE ABELIAN Standa	OCS)] SUBGROUP rd orien	C*V C2V C1 tation:	NOP 4 NOP 4 NOP 1				
Center A Number I	Atomic Number	C X	oordinat	es (Angs Y	stroms) Z			
1 2 3	8 6 16	0.0000 0.0000 0.0000	00 0. 00 0. 00 0.	000000 000000 000000	-1.6681 -0.5368 1.0354	 96 71 25 		
Harmonic fre Raman scatte reduced mass	equencies (cm ering activit ses (AMU), fo 1 PI	**-1), I ies (A** rce cons	R intens 4/AMU), tants (m	ities (H Raman de Dyne/A) 2 PI	KM/Mole), epolariza and norm	tion rat al coord	ios, linates 3 SG	:
Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar	566.535 13.031 2.464 19.765 1.268 0.750	0 3 3 8 1		566.5350 13.0313 2.4643 19.7658 1.2683) 3 3 3 L	8	89.042 19.416 9.042 46.773 7.968 0 193	9 8 2 6 0 2
Atom AN 1 8 2 6 3 16	x Y 0.00 0.40 0.00 -0.91 0.00 0.14 4	Z 0.00 0.00 0.00	x 0.40 -0.91 0.14	Y 0.00 0.00 0.00	Z 0.00 0.00 0.00	X 0.00 0.00 0.00	Y 0.00 0.00 0.00	Z -0.67 -0.52 0.53
Frequencies Red. masses Frc consts IR Inten Raman Activ Depolar Atom AN 1 8 2 6 3 16	2305.977 13.227 41.441 1181.339 27.923 0.375 X Y 0.00 0.00 0.00 0.00 0.00 0.00	3 3 2 1 7 8 <i>Z</i> -0.55 0.84 -0.04						

(a) The total number of degrees of freedom for each of these linear molecules is _____. This number results from the formula ______ where N denotes the number of atoms. Of the total number of degrees of freedom, a total of ______ are not vibrations but rather there are _____ degrees of freedom for translation and _____ degrees of freedom for ______. (6 p)

(b) Let's consider the stretching modes of two of these molecules. Identify all the stretching modes for each molecule. For each stretching mode, draw the molecule and use vectors to indicate the motion of each atom in the molecule. Write down whether the mode is *symmetric* or *asymmetric* in each case. (12 p)

0=C=0 0=C=S (c) Let's compare the IR and Raman activities of these three molecules. (10 points)

As you can see, for O=C=O and S=C=S, only one of the stretching frequencies is IR active. Which one is it? Explain why one stretching mode is active while the other one is not.

Briefly explain why only one of the stretching modes of O=C=O and S=C=S is active in Raman active. Compare the situation to the IR-activity.

Briefly explain why both stretching modes in O=C=S are both IR and Raman active.

(d) Group vibrations can be computed fairly well based on the force constants and the reduced mass of the vibrating system. At the very least, the respective formula is very useful to make qualitative decisions when shifts of bands are being considered. Let's try that by considering some labeled compounds. Remember that the potential energy surface does not depend on the atomic masses, that is, the force constants remain the same. (12 points)

What is the effect on the *symmetric stretching frequency* caused by the replacement of both ¹⁶O by ¹⁷O in O=C=O? Briefly explain.

What is the effect on the *symmetric stretching frequency* caused by the replacement of ${}^{12}C$ by ${}^{13}C$ in O=C=O? Briefly explain.

What is the effect on the *asymmetric stretching frequency* caused by the replacement of ^{12}C by ^{13}C in O=C=O? Briefly explain.

Question 3. Solvent Effects on the IR Spectra of Nitro-*N*-methylaniline.

Gonzalez, G.; Clavijo, E. J. Chem. Soc. Perkin Trans II 1985, 1751-1754.

(a) In Table 1, the N-H stretching frequencies are listed for various solvents. What happens to the N-H stretching frequency of *N*-methylaniline as the polarity of the solvent increases? Explain this shift by considering the solvent effects on the N-H force constant. (5 p)

		N-Methylaniline		<i>para</i> -Nitro- N-methylaniline		ortho-Nitro- N-methylaniline	
Solvent	DN"	v(N-H)	Δv(CCl ₄)	v(N-H)	$\Delta v(CCl_{4})$	v(N-H)	
Carbon tetrachloride (CCl ₄)		3 457	0	3 464	0	7 410	
Benzene (BZ)	0.1	3 44 5	12	3 435	20	2 410	U
Nitromethane (NM)	2.7	5 5	• -	3 437	27	2 411	-1
Nitrobenzene (NB)	44	3 4 7 8	20	3 437	27	3 412	- 2
Acetonitrile (AN)	14.1	3 420	37	3 427	51	3 409	ļ
Dioxane (DX)	14.8	3 417	40	3 409	33	3 404	6
Propane-1.2-diol carbonate (PDC)	15.1	3 475	20	3 390	74	3 405	5
Acetone (AC)	17.0	3 400	32	3 400	64	3 409	1
Diethyl ether (Ft ₂ O)	19.2	2 200	40	3 390	/4	3 399	11
	17.2	3 399	58	3 363	101	3 405	5
Tetrahydrofuran (THE)	20.0	2 204				3 384	26
rettanyarotatan (TTTT)	20.0	3 390	01	3 348	116	3 408	2
Trimethyl phosphate (TMD)	33.0	3 300				3 380	30
Tranetnyr phosphate (TMP)	23.0	3 380	77	3 325	139	3 408	2
N.N. Dimothulo antomida (DMA)						3 375	35
N,N-Dimethylacetamide (DMA)	27.8			3 295	169	3 406	4
Dimethol solution (DMCO)						3 360	50
Dimetriyi sulphoxide (DMSO)	29.8	3 342	115	3 286	178	3 407	3
Duriting (D)()						3 355	55
Pyriaine (PY)	33.0	3 326	131	3 270	194	3 405	5
Solvent donor numbers from ref. 16.						3 345	65

Table 1. Solvent effects on the N-H stretching frequency in N-methylaniline and its nitro derivatives

(b) The N-H stretching information from Table 1 is shown graphically (and more complete) in Figure 1. Note in particular that there are two peaks for the N-H stretch of the *ortho*-nitro-*N*-methylaniline. Draw the structures of the two isomers that cause these two peaks. Assign each peak to the correct isomer and explain your reasoning. (12 p)

Figure 1. Influence of the medium donor strength on the N-H frequency shifts, $\Delta v(CCl_4)$, for *ortho*-nitro-N-methylaniline (\triangle), *para*-nitro-N-methylaniline (\bigcirc), and N-methylaniline (\bigcirc).

(c) For a given solvent, the N-H stretching frequency of the *ortho* isomer is shifted much less than that of the *para*-isomer. The unsubstituted system is shifted by a value in-between the substituted systems. Explain why the shift is more for the *para* isomer than for the parent system. Explain why the shift is less for the *ortho* isomer compared to the parent system. (8)

para:		
ortho:		