Chemistry 433, Winter Semester 1998, Dr. Glaser Quiz I: "HMO", Wednesday, March 11, 1998, 20 minutes, not announced Your Name:

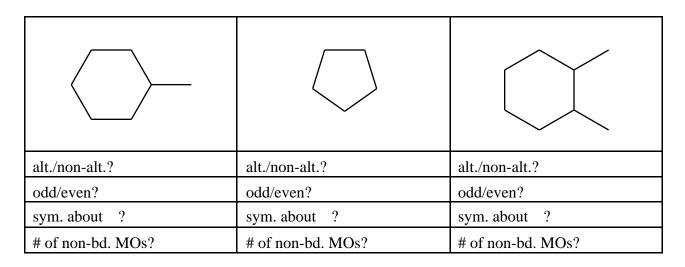
Question 1. Cyclopentadienyl Radical, Cation, and Anion. (18 points)

(a) On p. 3-5, HMO outputs are given of cyclopentadienyl radical, cation, and anion. Sketch MO #2 and MO #3 drawing circles whose radii reflect the AO contribution and use black and white circles to indicate sign. Clearly indicate where the nodes are. (6 points)

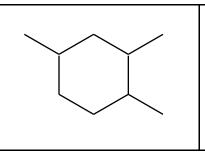
MO #2	MO #3

-1-

(b) Consider the -densities of the three species. For the cation and the anion, all C-atoms have the same -density. Yet, for the neutral, the present calculation would indicate different - densities for each C-atom? Does that make sense? Why or why not? (6 points)


(c) Show how the C1-C2 Bond Order is computed for the cation. Show how the C1 -density is computed for the anion. (6 points)

Points for Question 1:	/18		
Points for Question 2:	/15		
Points for Question 3:	/7		
Points for Question 4:	/10	Total Points:	/50


Quiz I "Computational Chemistry", Chemistry 433, WS98, Dr. Glaser

Question 2. Alternating and Non-Alternating Hydrocarbons.

For each of the unsaturated hydrocarbon, mark the carbons of the "stared" and "circled" sets, state whether it is alternant or non-alternant, whether it is odd or even, whether its MOs are symmetric about the -level, and, finally, give the number of non-bonding MOs. (15 points)

Question 3. (7 points) Determine the HOMO for the alternant hydrocarbon shown. Show work. No need to evaluate the square root that will show up.

Question 4. Heteroatoms. (10 points)

Write down the secular determinant for **pyrrole** in two ways: First consider only how $H_{ii}(N)$ is accounted for. In the second approximation also consider polarization effects on the C-atom(s) to which N is attached. For the N-atom in pyrrole, the -value is 0.5 and the -value is 0.8.

1. Approx.	2. Approx.

* * Hueckel Molecular Orbital Program Rainer Glaser, UMC, January 21, 1991 * * Written for but not limited to 30 carbon atoms * * Title: neutral HMO Connectivity Matrix: 0. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 0. The MO energies (Beta units) in line 1 The MO coefficient vectors follow 1 2 3 4 5 2.000 0.618 0.618 -1.618 -1.618 0.447 0.219 -0.593 0.580 0.253 0.447 -0.497 -0.392 -0.618 0.136 0.447 -0.526 0.351 0.419 -0.473 0.447 0.172 0.609 -0.061 0.630 0.447 0.632 0.025 -0.321 -0.545 The squared MO coefficient vectors are 1 2 3 4 5 0.200 0.048 0.352 0.336 0.064 0.200 0.247 0.153 0.381 0.019 0.200 0.277 0.123 0.176 0.224 0.200 0.029 0.371 0.004 0.396 0.200 0.399 0.001 0.103 0.297 Charge: 0 Number of Electrons: 5 Doubly occ. MOs: 2 Singly occ. MOs: 1 Ground State Energy: 5 alpha + 5.854 Beta The ground state electron configuration is: Bond 1-2 has pi-bond order: 0.415 Bond 1- 5 has pi-bond order: 0.662 Bond 2- 3 has pi-bond order: 0.785 Bond 3-4 has pi-bond order: 0.433 Bond 4-5 has pi-bond order: 0.632 Atom 1 has pi-density: 0.848 Atom 2 has pi-density: 1.047 Atom 3 has pi-density: 1.077 Atom 4 has pi-density: 0.829 Atom 5 has pi-density: 1.199

* * Hueckel Molecular Orbital Program * Rainer Glaser, UMC, January 21, 1991 * Written for but not limited to 30 carbon atoms * * Title: cation HMO Connectivity Matrix: 0. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 0. The MO energies (Beta units) in line 1 The MO coefficient vectors follow 1 2 3 4 5 2.000 0.618 0.618 -1.618 -1.618 0.447 0.219 -0.593 0.580 0.253 0.447 -0.497 -0.392 -0.618 0.136 0.447 -0.526 0.351 0.419 -0.473 0.447 0.172 0.609 -0.061 0.630 0.447 0.632 0.025 -0.321 -0.545 The squared MO coefficient vectors are 1 2 3 4 5 0.200 0.048 0.352 0.336 0.064 0.200 0.247 0.153 0.381 0.019 0.200 0.277 0.123 0.176 0.224 0.200 0.029 0.371 0.004 0.396 0.200 0.399 0.001 0.103 0.297 Charge: 1 Number of Electrons: 4 The HOMO is degenerate, DIRADICAL Doubly occ. MOs: 1 Singly occ. deg. MOs: 2 Ground State Energy: 4 alpha + 5.236 Beta The ground state electron configuration is: Bond 1- 2 has pi-bond order: 0.524 Bond 1- 5 has pi-bond order: 0.524 Bond 2- 3 has pi-bond order: 0.524 Bond 3-4 has pi-bond order: 0.524 Bond 4-5 has pi-bond order: 0.524 Atom 1 has pi-density: 0.800 Atom 2 has pi-density: 0.800 Atom 3 has pi-density: 0.800 Atom 4 has pi-density: 0.800 Atom 5 has pi-density: 0.800

* * Hueckel Molecular Orbital Program Rainer Glaser, UMC, January 21, 1991 * * Written for but not limited to 30 carbon atoms * * Title: anion HMO Connectivity Matrix: 0. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 1. 0. The MO energies (Beta units) in line 1 The MO coefficient vectors follow 1 2 3 4 5 2.000 0.618 0.618 -1.618 -1.618 0.447 0.219 -0.593 0.580 0.253 0.447 -0.497 -0.392 -0.618 0.136 0.447 -0.526 0.351 0.419 -0.473 0.447 0.172 0.609 -0.061 0.630 0.447 0.632 0.025 -0.321 -0.545 The squared MO coefficient vectors are 1 2 3 4 5 0.200 0.048 0.352 0.336 0.064 0.200 0.247 0.153 0.381 0.019 0.200 0.277 0.123 0.176 0.224 0.200 0.029 0.371 0.004 0.396 0.200 0.399 0.001 0.103 0.297 Charge: -1 Number of Electrons: 6 Doubly occ. MOs: 3 Singly occ. MOs: 0 Ground State Energy: 6 alpha + 6.472 Beta The ground state electron configuration is: Bond 1-2 has pi-bond order: 0.647 Bond 1- 5 has pi-bond order: 0.647 Bond 2-3 has pi-bond order: 0.647 Bond 3-4 has pi-bond order: 0.647 Bond 4-5 has pi-bond order: 0.647 Atom 1 has pi-density: 1.200 Atom 2 has pi-density: 1.200 Atom 3 has pi-density: 1.200 Atom 4 has pi-density: 1.200 Atom 5 has pi-density: 1.200