Chemistry 433, Winter Semester 1998, Dr. Glaser

Quiz I: "HMO", Wednesday, March 11, 1998, 20 minutes, not announced
Your Name:

Question 1. Cyclopentadienyl Radical, Cation, and Anion. (18 points)

(a) On p. 3-5, HMO outputs are given of cyclopentadienyl radical, cation, and anion. Sketch MO \#2 and MO \#3 drawing circles whose radii reflect the AO contribution and use black and white circles to indicate sign. Clearly indicate where the nodes are. (6 points)
MO \#2
(b) Consider the π-densities of the three species. For the cation and the anion, all C-atoms have the same π-density. Yet, for the neutral, the present calculation would indicate different π densities for each C-atom? Does that make sense? Why or why not? (6 points)

No, not really. You can draw five resonance forms that all are degenerate.
That would imply that there is 0.2 unpaired electron on each C.
The configuration is: Norm [pi(2)pi'(1) + pi(1)pi'(2)]
(c) Show how the C1-C2 Bond Order is computed for the cation. Show how the C1 π-density is computed for the anion. (6 points)
bond order C1-C2 in cation: $2 *(0.447 * 0.447)-(0.497 * 0.219)+(0.593 * 0.392)=0.524$
C1 pi-density: $2 *(0.200)+2 *(0.048)+2^{*}(0.352)=1.2$

Points for Question 1:	$/ 18$		
Points for Question 2:	$/ 15$		
Points for Question 3:	17	Total Points:	$/ 50$
Points for Question 4:	110		

Question 2. Alternating and Non-Alternating Hydrocarbons.

For each of the unsaturated hydrocarbon, mark the carbons of the "stared" and "circled" sets, state whether it is alternant or non-alternant, whether it is odd or even, whether its MOs are symmetric about the α-level, and, finally, give the number of non-bonding MOs. (15 points)

alt./non-alt.? alternant	alt./non-alt.? non-alternant	alt./non-alt.? alternant
odd/even? odd	odd/even? odd	odd/even? even
sym. about α ? Yes	sym. about α ? No	sym. about α ? Yes
\# of non-bd. Mos? 1	\# of non-bd. MOs? 0	\# of non-bd. MOs? 0

Question 3. (7 points)
Determine the HOMO for the alternant hydrocarbon shown. Show work. No need to evaluate the square root that will show up.

Question 4. Heteroatoms. (10 points)
Write down the secular determinant for pyrrole in two ways: First consider only how $\mathrm{H}_{\mathrm{ii}}(\mathrm{N})$ is accounted for. In the second approximation also consider polarization effects on the C -atom(s) to which N is attached. For the N -atom in pyrrole, the δ-value is 0.5 and the ρ-value is 0.8 .

1. Approx. (assume N is atom 3)					2. Approx. (assume N is atom 3)				
ac	bc	0	0	bc	ac	bc	0	0	bc
bc	ac	0.8 bc	0	0		1.05 ac	0.8 bc	0	0
	0.8 bc	ac+0.5bc	0.8 bc			0.8 bc	ac+0.5bc	0.8 bc	0
0	0	0.8 bc	aC	bc		0	0.8 bc	1.05 aC	bc
bc	0	0	bc	ac	bc	0	0	bc	ac


```
*******************************************************************
Title: anion
HMO Connectivity Matrix:
    0. 1. 0. 0. 1.
    1. 0. 1. 0. 0.
    0. 1. 0. 1. 0.
    0. 0. 1. 0. 1.
    1. 0. 0. 1. 0.
The MO energies (Beta units) in line 1
The MO coefficient vectors follow
        1 2 % 3 %
        2.000 0.618 0.618 -1.618 -1.618
    0.447 0.219 -0.593 0.580 0.253
    0.447-0.497-0.392 -0.618 0.136
    0.447-0.526 0.351 0.419 -0.473
    0.447 0.172 0.609 -0.061 0.630
    0.447 0.632 0.025 -0.321 -0.545
The squared MO coefficient vectors are
\begin{tabular}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0.200 & 0.048 & 0.352 & 0.336 & 0.064 \\
0.200 & 0.247 & 0.153 & 0.381 & 0.019 \\
0.200 & 0.277 & 0.123 & 0.176 & 0.224 \\
0.200 & 0.029 & 0.371 & 0.004 & 0.396 \\
0.200 & 0.399 & 0.001 & 0.103 & 0.297
\end{tabular}
Charge: -1 Number of Electrons: 6
Doubly occ. MOs: 3 Singly occ. MOs: 0
Ground State Energy: 6 alpha + 6.472 Beta
The ground state electron configuration is:
    2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bond 1- 2 has pi-bond order: 0.647
Bond 1- 5 has pi-bond order: 0.647
Bond 2- 3 has pi-bond order: 0.647
Bond 3-4 has pi-bond order: 0.647
Bond 4- 5 has pi-bond order: 0.647
Atom 1 has pi-density: 1.200
Atom 2 has pi-density: 1.200
Atom 3 has pi-density: 1.200
Atom 4 has pi-density: 1.200
Atom 5 has pi-density: 1.200
```

