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The ability to deduce the proper set of coupling constant (J) values from a complex first-order 
multiplet in a IH NMR spectrum is an extremely important asset. This is particularly valuable to 
the task of assigning relative configurations among two or more stereocenters in a molecule. Most 
books and treatises that deal with coupling constant analysis address the less usefid operation of 
generating splitting trees to create the line pattern from a given set of J values. Presented here 
are general and systematic protocols for the converse, Le., for deducing the complete set of J values 
from the multiplet. Two analytical methods (A, systematic analysis of line spacings, and B, 
construction of what can be called inverted splitting trees) are presented first. A reasonably 
thorough and systematic set of graphical representations of common doublet of doublets (dd's), 
ddd's, and dddd's are then presented. These constitute a complementary method for identification 
of Js through visual pattern recognition. These approaches are effective strategies for extraction 
of coupling constant values from even the most complex first-order multiplets. 

Introduction 

Proton NMR spectroscopy is, arguably, the most pow- 
erful tool for structure assignment in most classes of 
organic molecules. Increased access to spectral data 
acquired on higher-field NMR spectrometers means that 
more and more of the resonances in routine spectra are 
first-order. While it is true that most modern spectrom- 
eters (as well as an increasing number of desktop 
personal computers) have software routines capable of 
performing rapid simulation of multispin systems, this 
approach to the analysis of complex first-order multiplets 
is often cumbersome, time consuming, or less than 
convenient. Simulation of a given multiplet is largely 
an empirical process that requires an initial determina- 
tion or estimate of several of the individual coupling 
constants. Thus, the use of these computer-aided algo- 
rithms for the generation of simple first-order multiplets 
is less attractive than the ability to deduce a correct set 
of coupling constants upon simple visual inspection of any 
of the typically encountered line patterns. Graphical 
representations of common multiplet patterns are, in 
principle, quite useful for comparative analysis of actual 
data, but nearly all the published work has focused on 
non-first-order multiplets.2 The general application of 
such representations is somewhat limited for two rea- 
sons: second-order multiplets are less frequently en- 
countered at higher fields, and if one's spin system does 
not have the precise AvlJ value of the calculated spec- 
trum, the multiplet in question may look significantly 
different from the published representation. 

The emergence of routine multidimensional NMR 
spectroscopy has been accompanied by a decline in the 
learning, teaching, and practice of the important skill of 
assigning first-order multiplets by inspection. Determi- 
nation of coupling constants is still the most valuable 
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general method for assigning relative configurations of 
stereogenic centers in molecules. While the power of 
various routine two-dimensional NMR experiments is 
unarguable, it comes with a price. Data collection for 
2-D experiments is always more time-consuming than for 
the simpler 1-D experiment, and in most settings access 
to magnet time is finite. Since 1-D and 2-D methods 
often provide complementary structural information, it 
is important that chemists maintain expertise with both. 

This paper describes two related methods (A and B) 
that allow one to identify individual coupling constants 
within even the most complex first-order multiplets likely 
to be encountered in lH NMR spectra. It also provides a 
set of graphical representations (C and Tables 1-11) for 
assisting in empirical, visual pattern recognition. 

A first-order multiplet arises when no two of the spins 
within an interacting multispin system have 6vIJ 5 -6, 
and it always contains a symmetrical distribution of line 
positions about the midpoint of the multiplet (i.e., the 
chemical ~ h i f t ) . ~  In first-order multiplets the distance 
between the outermost pair of peaks is the sum of each 
of the coupling constants (Zl's), a fact that we frequently 
find useful in assigning or verifying, for example, the last 
J value for an incompletely resolved complex m~l t ip l e t .~  
Often "special relationships" exist among the sets of 
coupling constants. We define these as cases where one 
of the coupling constants is equal to some combination 
of sums and/or differences among the remaining coupling 
constants. So defined, these special relationships always 
serve to reduce the number of lines in the multiplet and 
simplify (or complicate, depending on one's experience 
and point of view) the observed pattern. Finally, note 
that it is often, but by no means always, possible to 
determine a given coupling constant from either of a pair 
of spin-coupled resonances. 

Methods for Deducing Coupling Constant Values 
A. Systematic Analysis of Line Spacings. The 

task of extracting the actual values of coupling constanta 

(3) Caution must be exercised, however, because many second-order 
patterns (e.g., AB, AA'BB', AAXX', and ABX) are also symmetrical. 

(4) Often the sum of the S s  for non-first-order multiplets is also 
the distance between the outside lines of the multiplet, but this 
relationship deteriorates by the appearance of additional lines as AvlJ 
becomes smaller and smaller. 
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Chart 1. Assocation between Coupling Constants and Line SpacingeO within dd’s and ddd’s 

Association Line Spacing Description 

for dd’s JL { 1 to 3)a (= {2 to 4)) larger J 

Js { 1  to 2) (= (3 to 4)) smaller J 

ZJ’S = JL + J s  11 t04) sum of J’s 

J L -  Js (2 to 31 difference of J’s 

for ddd‘s JL ( l t o 5 ) ( = { 2 t o 6 ) = { 3 t o 7 ) = { 4 t o 8 ) )  largestJ 
medium J 

smallest J 
sum of J’s  

sum of smaller two J’s  

difference of smaller two J’s 

where 

JL 2 Ju + Js 
JM 

JS 
ZJ‘S = JL + JM + Js 

JM + Js 
JM - Js 
JL + JM {lto7)(={2t08})  sum of larger two J’s 

J L -  JM 

JL+ Js 
J L -  Js 

{ l  t03) (= (2 to4) = {5 to 7) = (6to 8)) 
{ l  to 2) (= {3 to 4) = (5 to 6 }= {7 to 8)) 

{1 to81 
{ l  t04) (= {5 to 8)) 
{2 to 3) (I { 6  to 7)) 

(3 to 5) (= {4 to 6)) difference of larger two J’s 
{ 1 to 6) (= (3  to 8)) sum of largest and smallest J’s 
(2 to 5 }(= {4 to 7)) difference of largest and smallest J’s 

for ddd’s JL { I  to4) (= {2to6} = {3 to7) = (5 tog)) largest J 
mediumJ 

smallest J 
sum of J’s 

sum of smaller two J’s 
difference of smaller two J’s 

where 

JL 5 JM + Js 
JM 

J s  
ZJ’S = JL + JM + J s  

JM + Js 
JM - Js 
JL + JM ( 1  to7)(={2to8)) sum of larger two J’s 

JL - JM 

JL + Js 
JL - Js 

{ 1  to3) (= (2 to5) = (4 to 7) = (6  to 8)) 
( 1  to 2) (= {3 to 5) = {4 to 6 }  = {7 to 8)) 

11 to81 
( 1  to 5) (= {4 to 8)) 
{2 to 3) (= {6 to 7)) 

{3 to 4) (= {S to 6)) difference of larger two J’s 
{ 1 to 6) (= (3 to 8)) sum of largest and smallest J’s 

(2 to 4) (= (5 to 7)) diffennce of largest and smallest J’s 

a {i to JI = the separation in hertz between lines i and j .  

7 Hz 
A I J = 7,4,  and 2 Hz 

(rel. int. = f 4Hz 
1 ‘ 2 Hz I 1:1:1:1:1:1:1:1) I - 

1 1 1 1 1 1 1 1  4 s  6 7 a 
1 2 3 

4 HZ 

J = 4 ,4 ,  and 2 Hz 

2 Hz - 1 1  

Figure 1. Examples of ddd’s where JI 2 J, + J, (case i) and 
where Jl s J, + J, (case ii). 

from within a given multiplet is most obvious for simple 
doublet of doublets (dd’s). If the lines of the multiplet 
are numbered sequentially from, say, left to right (cf. 
entry a in Table 11, two (of the six) pairs of line spacings 
are associated with the smaller J value. As also sum- 
marized in the top portion of Chart 1, two more pairs of 
line spacings are associated with the larger J, and the 
remaining two pairs represent, respectively, the sum of 
and difference between the large and small S s .  The 

distance between lines i and j is denoted as (i to j )  
throughout the discussion. 

It is important to recognize that even though various 
sets of lines can have the same spacing, not all of those 
sets represent a coupling constant; some are coincidental. 
This is often a point of confusion. For example the 
distances between lines 1 to 2,2 to 3, and 3 to 4 in entry 
b in Table 1 are all identical even though only (1 to 2) 
and (3 to 4) represent an actual J; (2 to 3) is the 
difference between the two S s  (and (1 to 4) is the sum 
of the two Ss). 

The situation for doublet of doublet of doublets (ddd’s, 
bottom portion of Chart 1) is somewhat more complex, 
but still readily decipherable. For this treatment it is 
useful to define the S s  as Js, Jm, and J1 to correspond to 
the smallest, medium, and largest S s  of the ddd, respec- 
tively. Again, the lines are numbered sequentially from 
left to right. The relative line intensities are important. 
In the absence of special relationships, all lines are of 
equal intensity, and for a ddd there is a total of eight 
lines [cf. the example in case i) in Figure 11. One 
frequently encounters multiplets that contain line su- 
perposition, which is always accompanied by differential 
relative line intensities and a reduction in the total 
number of lines [cf. the example in case ii) in Figure 11. 
Under any circumstances the sum of the relative line 
intensities will always equal 8 for a ddd (4 for a dd, 16 
for a dddd, etc.). Lines of relative intensity greater than 
one are assigned more than one line number [e.g., the 
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sequence 1-(2/3/4)-(5/6/7)-8 for a 1:3:3:1 apparent 
quartet (ddd with three equivalent J's) or the example 
in case ii)]. Be aware that "leaning" within a given 
multiplet, arising from intermediate AvlJ values for 
which first-orderedness still holds, will distort the rela- 
tive intensities from perfect integer ratios. 

For doublet of doublet of doublets two situations can 
arise: case i where J1 I J, + J ,  and case ii where J1 5 
J,,, + J,. A typical example for each case is shown in 
Figure 1.6 With the lines now numbered as described 
above and with reference to the bottom portion of Chart 
1, one can assign the values of Js, Jm, and J1 in each of 
these multiplets by measuring the appropriate line 
spacings. The distance between lines 1 and 2 (i.e., (1 to 
2)) always corresponds to the smallest coupling constant 
(J,) and { 1 to 3) always corresponds to the next smallest 
coupling constant (J,). However, JI corresponds to (1 
t o  5) for case i but to (1 to 4) for case ii. The task of 
identifying J 1  from within dddd's (or higher multiplets) 
by this strategy is considerably more difficult. However, 
removing the smallest coupling (J,) from a dddd, thereby 
creating a simplified ddd, permits application of the above 
strategy. On the other hand, this simplification is the 
first step in creating what we call here an inverted 
splitting tree, a process that is generalized next. 

B. Inverted Splitting Tree Generation. The pro- 
cess of deconvoluting a first-order multiplet more complex 
than a ddd by the method described in A is not straight- 
forward. We now describe a systematic approach that 
is applicable to even the most complex first-order mul- 
tiplets. This strategy amounts to generation of an 
inverted splitting tree. Many readers are familiar with 
the process of generating the appearance of a first-order 
multiplet from a given set of J values, and many texts 
present the creation of splitting trees from a single line 
by sequential branching (most easily done proceeding 
from the largest J to the smallest). However, the ability 
to do the converse, to deduce the proper individual J's 
from a given complex multiplet, is the more valuable yet 
more difficult skill to attain. 

The total number of lines and the relative line intensi- 
ties within a given multiplet are important parameters. 
Recall that dd's, ddd's, and dddd's with no special 
relationships will consist of 4, 8, and 16 lines, respec- 
tively, all of equivalent intensity and that the presence 
of special relationships among the coupling constants 
both reduces the total number of lines and alters the 
relative line intensities. The sum of the line intensities, 
appropriately normalized, will be identical for every 
multiplet of a given class (Le., 4 for dd's, 8 for ddd's, and 
16 for dddd's). 

A general protocol for deducing the individual J's for 
a given multiplet (illustrated in Chart 2 specifically for 
the ten-line 1:2:1:1:3:3:1:1:2:1 dddd corresponding to 
entry e of Table 9) consists of the following: 

Step i: As discussed earlier, the distance between lines 
1 and 2 (or the, say, left-hand-most pair) always repre- 
sents the smallest J value of the multiplet [cf., J, in panel 
i) of Chart 21. If their relative intensity is 1:1, then the 
smallest J is unique; if it is 1:2 (or 1:3, etc.), then there 
are two (or three, etc.) identical smallest S s .  

Step ii: Identify the full set of pairs of lines separated 
by this smallest J value. This is perhaps the most diffi- 

(5 )  Notice that the examples chosen to illustrate cases i and ii were 
somewhat arbitrarily chosen. Examples could easily have been selected 
in which the case i and case ii multiplets contained fewer than and 
exactly eight total lines, respectively, rather than the converse. 
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Chart 2. Protocol for Generating an Inverted 
Splitting Tree: Identification of Individual 

Coupling Constants as Applied to the dddd from 
Entry e of Table 9 

I I d  Ill1 1 
JS - 

ii) 

iii) 

iv) c, w LJ 

u u  

cult step in the process. A dddd will contain eight such 
pairs. Each pair will have a partner pair symmetrically 
arranged by reflection through the midpoint of the 
multiplet. Those pairs associated with lines of intensities 
> 1 will be partially or totally coincident with other pairs. 
Thus, the total number of pairs associated with any 
single line is equal to the relative intensity of that line. 
As seen in panel ii), this is manifested in the number of 
times the ends of interconnecting arcs intersect a given 
line position (or vertical tick). That is, lines of intensities 
1, 2, and 3 in the multiplet in Chart 2 have the ends of 
one, two, or three arcs, respectively, terminating at that 
line position [ef. panel ii)]. 

Step iii: Identify the centers of each of the pairs 
created in step ii, which collectively represent a new, 
simplified pattern (a ddd) as indicated by the dots in 
panel iii) as well as the tick marks in panel iv) in Chart 
2. Notice that this submultiplet (in this instance a seven- 
line 1:1:1:2:1:1:1 ddd) is the residual pattern that would 
remain after selective decoupling of the spin responsible 
for the smallest J in the original multiplet. The spacing 
between the first (or last) pair of dots in this simplified 
multiplet represents the next smallest J of the original 
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Table 2. ddd's Where J, = J, (app dt's) 

ntry Multlplet Appearance 

I 
z4 

1 
1B 

a"' @ 6 = 0.61; dd; J - 8.3.3.8 Hz; entry b 

6-  0.44; dd J - 3.8,3.8 Hr; entry e ''*e/\\ 
H' 

multiplet [i.e., Jdmdium in panel iv); incidentally note 
that J, = J,, for the example in Chart 21. 

Step iv: The centers of each of these new pairs 
[diamonds in panel iv)] collectively represent a new, 
further simplified, four-line pattern (a dd). The distance 
between the first (or last) pair of diamonds in panel iv) 
as well as the tick marks in panel v) represents the third 
smallest Coupling Constant, Jamedium large). 

Step v: Repeat as necessary until all S s  have been 
established. One simple check for internal consistency 
is to verify that the sum of the determined coupling 
constants ( V s )  is equal to the distance between the two 
outermost lines of the multiplet. 

C. Graphical Representations (Tables 1-11). An 
alternative strategy for analysis of first-order multiplets 
is through visual pattern recognition. Many will find this 
approach complementary or preferable to the more 
analytical methods discussed above. We have generated 
a series of tables that shows systematic sets of first-order 
multiplets for the most commonly encountered spin 
systems. Representations of dd's and ddd's as well as of 
the more complex doublet of doublet of doublet of doublets 
(5 spins, dddd's) are included. Within any one table a 
single coupling constant, arbitrarily named J,, is varied 
from large to small (usually to 0 Hz) values; the remain- 
ing coupling constants (J,, Jx, J,) are invariant through- 
out any one table. As a consequence, within any one 
table, entry a consists of relatively widely spaced, identi- 
cal halves of the multiplet that converge as the variable 

nl - 
a 

b 

C 

d 

0 

f 

II 

h 

I 

I 
r 
25 

I 

- 

D 4 4  20 

I2 4 4  20 

9 4-4 17 

8 4-4 16 Jir-Jir+J 

7 4-4 15 

6 4-4 14 

5 4-4 13 

4 44 12 Jir-Ji~ 

3 4-4 11 

2 44 I O  

1 4-4 9 

0 4-4 8 

1 1  
b 

h3.72, ddd, J I 11.3, 11.3,2.5 Hi 
mw k 

&D 15 I D  6 D -S -ID -15 Ik 

J,  decreases until the two halves are superimposed in 
the limit where the J, = 0. Intermediate entries cor- 
respond to partially merged situations in which the two 
halves have undergone one or more sequential crossings 
of the innermost lines. 

For some of the Table entries, special relationships 
(vide supra) exist among the Ss. These relationships, 
along with the magnitudes of J,, Jx, Jy,  JL, and the U s ,  
are listed in the right-hand columns of each table. 
Note that although a specific (but arbitrary) set of J 
values has been chosen for illustrating the trends within 
any one table, those trends hold, of course, for any set 
of Js having similar relative magnitudes and special rela- 
tionships. 

For any given table the specific line numbers that 
correspond to the generic J,, Jx, Jy,  and J, are noted 
below the generic column heading. These line number- 
ings change from table to table. For example, J, in Table 
1 is J13 (i.e., 11 to 30 while J,  in Table 2 is J14. 

Note that the line numberings used in Tables 1-11 
do not follow the rigorous convention used in sections A 
and B. Instead, the multiplet in entry a is simply 
numbered from left to right disregarding relative line 
intensities. Thus, each line has a single number at the 
outset (entry a), the crossing phenomena just mentioned 
are more easily tracked, identification of Ss within a 
visually matched multiplet is facilitated, and, impor- 
tantly, the 1ine.spacings corresponding to every coupling 
constant, including the variable J,, remain the same for 
all entries in the table. 
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Table 3. ddd's Where J, = J, 

en1 

a 

b 

- 

C 

ci 
e 

f 

0 

h 

i 
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Table 4. ddd'e Where J, = 25% 

ni - 
a 

b 

m 

C " 

d 

0 

f 

Q 

h 

i 

I 

- 

9 4 3 1 6  

8 4 3 1 5  

7 4 3 14Jf,=Je+Jlz 

6 4 3 1 3  

5 4 3 1 2  

4 4 3 11 Jl,-Jlj 

3 4 3 10 Ji5-Jj~ 

2 4 3  9 

~ @ b2.58.ddd,J-18.2.9.6.8.4HZ 
mry C 

88 II *I I 8 4 -1s -15 w 

Included in each table is one (or two) representative 
multiplet(s) arising from the circled (or boxed) proton(s) 
taken from 'H NMR spectra of known molecules.6 Al- 
though many of these presentations are simulations' of 
tabulated J values (since they are taken from 'pre- 
electronic storage" spectra), we have confirmed that this 
is an accurate representation of the actual spectrum by 
simulating multiplets for which the actual spectra were 
available. The examples in Tables 1, 4, 5, 9(e), and 10 
(g) are taken from "real" rather than simulated spectra. 
The examples in all of the tables were selected to 
illustrate cases where special relationships exist among 
the Js. These are particularly instructive since first- 
order multiplets with no special relationships give a full 
complement of 4,8,16, ... lines of identical intensity that 
are relatively easy to identify and interpret. 

Table 1 and Tables 2-5 contain all the possible 
permutations of relative J values for dd's and ddd's, 
respectively. In other words, every conceivable first-order 
dd and ddd pattern can be approximately matched to one 
of the entries in these tables. On the other hand, only a 
somewhat arbitrarily chosen representative set (vide 
infra) of all possible dddd's is illustrated in Tables 6-11. 

Table 1 shows the familiar series of typical doublet of 
doublets. Notice that there are several relative line 

(6)Spectral data were collected on a variety of spectrometers 
ranging from 300 to 500 MHz. (a) Examples from Tables 1, 5, and 9, 
entry e: Vyvyan, J. R. Unpublished results. (b) Examples from Tables 
2, 6, entry f, 7, and 8: North, J. T. Ph. D. Dissertation, University of 
Minnesota, 1990. (c) Examples from Tables 3,9, entry g, and 10, entry 
c: Peck, D. R. Ph. D. Dissertation, University of Minnesota, 1984. (d) 
Example from Table 4: Koltun, D. O., Vyvyan, J. R. Unpublished 
results. (e) Examples from Tables 6, entry c, and 11: Dellaria, J. F. 
Ph. D. Dissertation, University of Minnesota, 1982. (0 Example from 
Chart 3: Renner, M. K, Priest, 0. P. Unpublished results. 

(7) Simulation was performed with the VNMR version 4.1 software 
package on a Varian VXR spectrometer using a spectrometer frequency 
of 500 MHz and a line width ranging from 0.5 to 0.7 Hz. 

10 4 2 16 

8 4 2 1 4  

7 4 2 1 3  

6 4 2 12Jls=Jfa+Jj; 

5 4 2 1 1  

4 4 2 10 Je-Jf j  

3 4 2 9  

2 4 2 8 J f 5 ~ J a  

t ! ! t f l , ! t  1 1 4 2 7  

Table 1. ddd's Where J, JI 

Jz Jy Jr ' Relation- 
entry Multiplet Appearance J u  J'r Jfr J'e 8hlPS L 

h 

9 8 1 1 6  

8 6 1 1 5  

7 6 1 14 Jls=J~j+Jfz 

6 6 1 13 Jfs=Jfa 

5 6 1 12 Ja-Jta-Js 

4 6 1 1 1  

3 6 1 1 0  

2 6 1 9  

1 6 1 8 Jjs=Jiz 

0 8 1 7  

spacings that repeat themselves during the progression 
of Jz(13) from large to small. For example, entries a and 
h are each a pair of narrowly spaced outer and a pair of 
widely spaced inner lines. Similarly, entries b and g are 
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a ! f !  a 

a 

b 

El 
d 

r 

0 
I 

12 5 3-3 23 
Table 7. dddd's Where J, = J, and Jx = Jw (app tt's) 

Ja* Jy J.*Jw Z ~ ~ ~ ~ i ~ i  
entry Multiplet Apprrrancr JI,= J W  Ja= JW J'S Relationships 

0-8 2-2 20 

6-6 2.2 16 

6 5  2-2 14 

each a set of four equally spaced lines; they also have 
the same special relationship. Finally, the number of 
lines is reduced to three (cf. entry e) in the trivial and 
common case of a dd appearing as an apparent triplet 
with relative line intensities of 1:2:1. 

Table 8. dddd's Where JJ = J, (app dtd's) 

@ 
b 

C 

d 

0 

t 

9 
h 

I 

i 
k 

I 

m 

H 

@ 62.80, dddd, J - 12.0.3.0.3.0, 1.0 Hz 
entry a 

/ml ! ! f A ! ! A k !  a 
.12.10 % . 6 ' 4 ' . 2  0 2 4 6 8 10 12* 

@b0.61. dddd, J - 8.7, 5.3. 3.4,3.4 HZ 
nnby 0 

,? 

Tables 2-5 show the multiplets associated with dou- 
blet of doublet of doublets under circumstances where 
two of the three coupling constants are equal (Jy(12,) = 
JdI2), Table 21, nearly equal (Jd13) = J d l ~ ) ,  Table 3), related 
by a factor of two (Jd13) = 2Jd12), Table 41, or very different 
(Jy(13) * J ~ I z ) ,  Table 5). Table 2 contains the case where 
the two invariant coupling constants (Jy(ly) and Jx(12)) of 
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Table 10. dddd's Where Jy Jx rx Jw 
Jz Jy Jx Jw x ;%;:\- entry Multiplrt Apporrantr 

J t r  JtaJis J'r #hip8 - 
a 

b 

El 
d 

e 

t 

9 
h 

I 

I 

k 

I 

- 

~~~~ 

I ?I! C L C  ?. !!,A !!I d 

4 111 !Id Id! !dB 4 
! I!! I ! ! !  !A!! !!A c, 

1 1 1 1  All All 1 1 1  1 

1 1 1 1  llllll 1 1 1  1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 

1 All 1 1 1 1  1 1 1  1 

1 Ill 1 1 1  All 1 

1 llllllllll 1 

1 1 1 l ~ l ~ l ~ l l A  1 

1 1  l l l l l l l l  1 1  

I 1 1 1  1 1 1  1 
I . . .  , . 
42.10 .h i, i ' i . 6  1 i ' b ' h ' b ' t i  

61.83.dddd. J-14.0.7.6,6.5, 5.0Hz 
entry c 

Table 11. dddd's Where Jy  * Jx F-Z Jw 

'"' 
a 

b 

r Multlplrt Appearancr 

t t !  ! ! :t A !A a a tf c 
! !! ! : it!!!! a b tf t 
! ! ! ! ! !1I!A!tA! s 10 

! t! ! !;:$!a a Ct t 
! t !  ! ! !!!! a r, A!' f 

t !f ! A !J ?, a ?a d 
I011 

1 2  7 3 2 24 JIO-JIS+J~S+JIZ 

I1 7 3 2 23 

10 7 3 2 22 Jio-Jis+Jis 

9 7 3 2 21 JIO-JIJ+JIZ 
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the ddd are identical so that the multiplets are all 
apparent doublets of triplets (6 lines), sometimes with 
additional simplification arising from additional special 
relationships [e.g., entries d (5 lines), h (4 lines), and 1 (3 
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Chart 3. Inverted Splitting Tree Analysis for the 
ddq (app tq) from H(3) in One Rotamer of the 

Mosher Amide 1 

6.5 Hz 

6.5 Hz - 
W ~ L S  9.5 Hz 

Me' 0 @i 0 
Ph"' C F ~  

0 Me 
Me' 

Me0 

lines)]. Table 3 contains the cases where the two invari- 
ant coupling constants are only slightly different. The 
illustrated example, in which the central two lines of the 
ddd coincide and for which the largest J value is the s u m  
of the two smaller Ss (i.e., J2(15) = J ~ l 3 )  + Jx(12) cf. entry 
c), is a commonly encountered one. This relationship and 
pattern (a seven-line 1:1:1:2:1:1:1 multiplet) are also seen 
in the example accompanying Table 4 (entry d). Table 5 
illustrates the case where one of the invariant Ss is 
always significantly larger than the second (Jd13, >> J~(12)). 
The multiplet arising from the boxed proton in the 
example molecule corresponds to a situation intermediate 
between entries c and d and illustrates an important 
point. Namely, to find the best fit one must sometimes 
envision the continuum of multiplets that arise by sliding 
together the two halves of the pattern for entry a (as J,  
decreases) within any one table. There often is not a 
perfect correlation between the multiplet under analysis 
and a specific table entry. 

Tables 6-11 show doublet of doublet of doublet of 
doublets (dddd's) that increase in their complexity as the 
tables progress. Table 6 illustrates the case where three 
of the four S s  are equal, resulting in an apparent doublet 
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of quartets (i.e., app dq). This type of relationship is 
prevalent in rigid ring systems either where a geminal 
and two diaxial couplings give three approximately 
equivalent S s  and the fourth and smallest J arises from 
the gauche axial-equatorial arrangement of a pair of 
vicinal protons or, as is the case for the example of the 
boxed proton (cf. entry c), where a single large geminal 
coupling is accompanied by three approximately equiva- 
lent and small gauche couplings. The special relationship 
where the largest J is twice as large as any of the 
equivalent smallest S a  is present in the example of the 
circled proton (cf. entry f) and results in the greatly 
simplified six-line pattern. Table 7 shows multiplets that 
contain two pairs of identical S a  (i.e., app tt's). The 
example in Table 7 (cf. entry e) is commonly encountered 
in acyclic molecules where a methine proton is flanked 
by two methylene groups that each constitutes a pair of 
diastereotopic protons. Table 8 depicts dddd's in which 
the two S a  of intermediate magnitude are identical (i.e., 
app dtd's). Notice that the smallest J (1 Hz) in the 
example multiplet (cf. entry a) arises from four-bond 
W-coupling. Table 9 presents multiplets in which the two 
smallest S s  are identical in magnitude (i.e., app ddt's), 
although cases where the value of Jz(m drops below Jy(13) 
are not shown . Another commonly encountered ddt 
arises from the methine of a terminal allyl group (i.e., 
CHz=CHCHzR, not shown). 

Tables 10 and 11 include representative cases of dddd's 
to  which no universal special relationship applies (as is 
the case for Tables 6-9). Thus, for the first time among 
Tables 6-11 some of the entries show multiplets having 
the full complement of sixteen lines. The multiplets in 
Table 10 contain three and those in Table 11 contain two 
small S a  of nearly equal magnitude. 

J. Org. Chem., Vol. 59, No. 15, 1994 4103 

Recognize that there exist other possible combinations 
for the relative magnitudes of J's within the family of 
dddd's than those shown in Tables 6-11. Recall that all 
permutations of J values for the simpler dd's and ddd's 
were encompassed by Tables 1 and 2-5, respectively. 
When in need, the reader is encouraged to extend the 
methods described here to those cases of J value combi- 
nations for dddd's not explicitly covered as well as to yet 
more complex multiplets like the ddddd's. 

We conclude with one example of the latter. Chart 3 
shows the multiplet arising from H(3) in the minor 
rotamer of the indicated Mosher amide.6f The multiplet 
was identified by the inverted splitting tree method as a 
ddq with J = 9.5, 9.5, and 6.5 by the sequence of steps 
outlined in Chart 3. This set of coupling constants 
requires that the molecule exists largely in the conforma- 
tion having dihedral angles of -150" and 30" between 
H(3)/H(4a) and H(3)/H(4b), respectively. It should be 
noted that it was not possible to identify the two vicinal 
9.5 Hz Js from the benzylic methylene resonances due 
to significant overlap among those resonances for the 
amide rotamers, even at 500 MHz. 

We have found the complementary approaches of 
visual pattern recognition (C) as well as the more 
systematic and analytical methods described in A and B 
to be effective and powerful tools. These approaches 
permit easy access to the rich, intrinsic information that 
is universally available via the simplest of NMR experi- 
ments. 
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