Identifying the normal ranges of behavior in an agent-based epidemic model

> Dr. Lisa Sattenspiel Aaron Schuh Department of Anthropology

Some overarching research questions

- How does the nature of social interactions within a small community influence infectious disease spread?
 - Impact of age and sex differences
 - Occupational differences
 - Household size and composition
 - Visiting patterns
- How might modern medical practices have influenced recent disease patterns in comparison with those of the past?
- How do the epidemic experiences of very small and dispersed communities (with their highly localized interactions) differ from those of large, urbanized communities?

Newfoundland

General characteristics of the 1918 flu epidemic

- Total global mortality estimated at 50,000,000 or more
- Worldwide mortality rate averaged 2.5-5 deaths per 1000 population, but highly variable with a range of < 1 to nearly 800 deaths per 1000
- Global spread clearly associated with troop movements at the end of WWI
- Mortality high for all ages; young adults especially hard hit relative to other flu epidemics
- Some deaths due to influenza itself; many due to pneumonia or other secondary infections

Data sources

- Death records for 1918-1920 from the provincial archives ("The Rooms")
 - Name, date of death, place of death, cause of death, birth date, birth place, sex, age, etc.
 - 1229 flu deaths, 825 deaths from pneumonia and related conditions
- Hospital records from the Charles S. Curtis Memorial Hospital in St. Anthony
- Census data and other vital statistics
- Newspaper accounts of the epidemic
- Government correspondence and other miscellaneous information

The Modeling Process

Why use a mathematical/computer model?

- Allow for "experimentation" on human populations that would be impossible or unethical in the real world.
- Help to understand conditions under which infectious diseases emerge and spread across a landscape.
 - Focus research efforts on factors most likely to have a significant impact on patterns of epidemic spread.
- Identify critical areas with insufficient data.
 - Can be used to evaluate the efficacy of potential control strategies before attempting costly and/or risky field trials.

SIR - A Basic Epidemic Model

Using agent-based models to understand the spread of infectious diseases in Newfoundland

Model structure

- Buildings include 84 houses, 2 churches, a school, an orphanage, a hospital, and 23 boats
- 503 agents with demographic characteristics (age, sex, occupation, religion, etc.) determined from 1921 census records
- Divided into households according to census
- Most men are fishermen assigned to particular boats; older women or young women without children may also go to assigned boats
- Women with young children stay home
- Children aged 5-15 go to school
- Some doctors, nurses, teachers, and assorted other occupations
- Agents are home every night, go to boats, school, etc during the day (M-Sat); everyone has chance of going to church on Sunday

- Each simulation begins with a single case chosen randomly
- Simulations run for 200 time units (100 days)

Present activities

Sensitivity analyses

- Single and multiple variable analyses for random mixing model
- Single variable analyses and one dual variable analysis of partial directed movement model

Other Applications of the Approach

Model to be used as a base for future research with linked communities, other diseases, and/ or other populations

- Multiple communities within Newfoundland to study geographic spread
- Other infectious diseases typhoid, malaria, smallpox, etc.
- California Mission Period

What I Actually Did

Replication Study

The replication study compares 20 sets of 1000 runs in order to find a normal range of variation between curves when using identical parameters. It is conducted to ensure that the model is running consistently and appropriately according to its design.

Recent Work

Repetition Study How many runs are adequate to determine the true form of the model? Started with 1000 runs in the Replication Study

What makes the three peaks?

Fishermen
School Children
All Others

What affects the School Children?

Two peaks from School Children

 Family size?

 Size of school

 Increased size of school

Acknowledgements

Collaborators/Assistants: Carolyn Orbann, Jessica Dimka, Erin Miller, Becca Shattuck

in an un

The Canadian Embassy Research Grant Program The University of Missouri Research Council The University of Missouri Research Board