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There are two common usages of the word “flux” in science: (1) the flow
vector field for the transport of some substance across a surface measuring
the amount of stuff flowing across a small piece of surface in a small time
including the direction of the flow and (2) the amount per time of the trans-
port of some substance across a surface. The units for the flux in usage (1)
are the amount of stuff per area per time and the units for flux in usage (2)
are amount per time.

Typical type-1 fluxes are

diffusion flux
mol

m2s
, volume flux
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;

they correspond to the type-2 fluxes
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,

kg

s
.

What are typical type-1 fluxes? Fluxes are ubiquitous in science. While
an exact description of the movement of substances across surfaces is not
known, useful approximations (which yield excellent results in many cases)
are obtained from the simple principle that stuff usually flows from regions of
high concentration toward regions of low concentration. This is the content
of Fick’s law (Adolf Fick 1855) for molecular diffusion, Fourier’s law (Joseph
Fourier 1822) of heat diffusion, and Darcy’s law (Henry Darcy 1856) for flow
through porous media. The stuff for Fick is molecules, for Fourier heat, and
for Darcy fluid. Mathematically, the flow from higher to lower concentration
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is given by the gradient. For example, imagine a substance distributed in
one direction with coordinate x. You might imagine that the substance has
the same concentration in the plane perpendicular to the given direction.
Let the concentration of the substance at position x and time t be C(x, t).
Fick’s law says the flux vector is proportional to the spatial derivative of C;
or, more precisely,

X = −λ∂C
∂x

,

where the positive number λ (called the diffusivity) is measured in square
meters per second. The negative sign is there to ensure that X points in the
direction of lower concentration. If the concentration increases with x, the
derivative is positive and X is negative; if the concentration decreases X is
positive.

Suppose the concentration of some substance is distributed in a round
pipe with radius a and length L whose central axis is our line with coordinate
x on the interval (0, L). For example, suppose the concentration in the cross
section at x is C(x, t) = c(x/L)2/2 moles per cubic meter in a medium whose
diffusivity is λ square meters per second. The corresponding flux field is

X(x, t) = −λc
L

(x
L

)
,

measured in moles per square meter per second. Note that c has units moles
per cubic meter.

How much of the substance is crossing the cross section of the pipe at
position x? Answer:

πa2λcx

L
moles per second in the negative direction of the coordinate axes. A typical
diffusivity is λ = 10−10 square meters per second.

In many instances we don’t know the concentration in the pipe. Perhaps
we know the concentrations at the ends of the pipe, and we wish to know
the concentration profile inside the pipe.

What is a good candidate for a law that tells us the concentration changes
in space and time. The units for the change in concentration per time ∂C/∂t
are amount per volume per time. This should be related to the flux, which
is given in amount per area per time. To match these units, we must either
multiply the rate of change of concentration by a length or divide the flux
by a length. We might imagine many different ways to do this. The correct
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way is to differentiate the flux with respect to length and change the sign to
get

∂C

∂t
= λ

∂2C

∂x2
.

At least the units are correct. Why should this equation be the correct model
for the diffusion of our substance?

Let’s consider an subinterval [β, γ] on our line. Imagine the distribution
of our substance in the pipe along this interval. The total amount of stuff
in the pipe over the interval is obtained by adding up the stuff in each slice.
How do we do this? We break up the interval into small subintervals and
pick a point in each subinterval where the concentration at the chosen point
is representative of the concentration along the entire subinterval. Over this
subinterval, the amount of stuff in the pipe is πa2 times the length of the
subinterval multiplied by the concentration at the representative point. We
add all these products together to approximate the amount of stuff over the
entire interval.

Does this prescription remind you of a mathematical concept? It should!
Indeed, the mathematical representation of this process is the definite integral
of the amount of stuff over the interval; that is,∫ γ

β

πa2C(x, t) dx.

How does the total amount of stuff in the interval change with time; or
equivalently, what is

d

dt

∫ γ

β

πa2C(x, t) dx ?

The rate of change in the amount of stuff (assuming that none of the stuff is
created or destroyed in the portion of the pipe over the interval [β, γ]) is the
rate of stuff going in minus the rate going out of the cylinder over the interval.
The only place for stuff to go in or out is through the cross sections at the
ends of the interval. Under our assumption that the concentration does not
change on a cross section, the amount of stuff per time crossing the section
at β should be the flux times the area −λπa2C(β, t). We have to be careful
about the sign. Which way does the stuff cross this boundary? Suppose
the concentration is higher outside the the cylinder under consideration than
inside. At both boundaries (at β and γ) stuff is flowing into the cylinder
over [β, γ]. The rate of change of the concentration with respect to position
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is negative at β and positive at γ. We want a positive contribution to the
rate of change of the amount of stuff at both ends. Thus, the sign of the flux
over the boundary has to be positive at both ends. This means the rate in
minus the rate out is

−λπa2∂C
∂x

(β, t) + λπa2
∂C

∂x
(γ, t).

Thus, we have∫ γ

β

πa2C(x, t) dx = λπa2
∂C

∂x
(γ, t) − λπa2

∂C

∂x
(β, t),

where the right-hand side is a type-2 flux. Does this right-hand side remind
you of something from calculus? It should! The right-hand side is in the
form f(γ) − f(β). Using the Fundamental Theorem of Calculus, we may
recast the equality in the form

πa2
d

dt

∫ γ

β

C(x, t) dx = πa2λ

∫ γ

β

∂2C

∂x2
(x, t) dx.

Or, equivalently, we have∫ γ

β

∂C

∂t
(x, t) dx = λ

∫ γ

β

∂2C

∂x2
(x, t) dx.

Our interval [β, γ] is arbitrary along the axis of the pipe. So, how could it be
that the same integral relation is true for every interval? There is only one
way:

∂C

∂t
=
∂2C

∂x2
.

This gives a partial differential equation for the change in concentration over
time. This equation is called the diffusion equation (and sometimes Fick’s
second law).

We have just seen how our substance diffuses in its medium. What hap-
pens when it meets a permeable membrane? In this case, there are two
concentrations to consider: the concentrations on the two sides of the mem-
brane. Let’s suppose the concentration to the left of our membrane, which
is a cross section of our pipe, is CL and the concentration on the right is
CR. For definiteness, suppose the membrane is at the position x = β. The
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constitutive law for the flux across the membrane that respects Fick’s law
is that the flux is proportional to the difference in concentration across the
membrane. From the point of view of the left side of the membrane, the flux
is given by

−λπa2∂C
L

∂x
(β, t) = α(CL(β, t) − CR(β, t).

From the point of view of the right side,

−λπa2∂C
R

∂x
(β, t) = α(CL(β, t) − CR(β, t)).

Of course, this is for an ideal membrane that has zero thickness. The values
of the concentrations at the membrane are limits from the left and right-hand
sides.

We are building up to a complete model of the diffusion in the pipe
containing the membrane. We simply put together the diffusion equations
for the right and left sides, the boundary conditions at the membrane and
the boundary conditions at the ends of the pipe.

For our pipe with fixed concentration at its left end and with a cap at
the right end, a reasonable model would be

∂CL

∂t
= λ

∂2CL

∂t2
,

∂CR

∂t
= λ

∂2CR

∂t2
,

CL(0, t) = c,

−λπa2∂C
L

∂x
(β, t) = α(CL(β, t) − CR(β, t)),

−λπa2∂C
R

∂x
(β, t) = α(CL(β, t) − CR(β, t)),

∂CR

∂x
(L, t) = 0.

Given initial concentration profiles for CL and CR (that is, CL(x, 0) = f(x)
for x in the interval (0, β) and CR(x, 0) = g(x) for x in the interval (β, L)),
we can find the concentrations predicted by the model at each position x and
every time t > 0.

How would we solve the equations making our model? This is a very
good question and a long story that you will soon learn how to read if you
continue to study mathematics.
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How do we get the second type of flux from the first in general? Obvious
answer: multiply by area! But, life is not quite this simple.

Imagine a surface that is in the domain of a flow. Surfaces usually have
two sides. (Can you think of a one-sided surface?) For a two sided surface,
it is possible that it is being crossed in both direction by the same flow with
flux X. We may cover the surface with small non-overlapping patches where
X crosses the surface in the same direction on each patch. On each such
patch, the vector X is the sum of a normal and a tangential component
with the tangential component given a plus or negative sign according to a
preliminary choice of direction across the two-sided surface. Clearly, only
the tangential components count in determining the transport. We pick one
representative point on each patch, consider the signed normal component
of X at this point, multiply its length by the area of the patch, and add
together all of the resulting numbers. This is the type-2 flux over the surface
corresponding to the type-1 flux X. If you have taken calculus, you should
recognize the sum just mentioned as an integral.
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